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ABSTRACT
Multi-hop routing is essential to the operation of wireless ad
hoc networks. Unfortunately, it is very easy for an adversary
to forge or modify routing messages to inflict severe damage
on the underlying routing protocol. In this paper, we present
SEAR, a Secure Efficient Ad hoc Routing protocol for ad hoc
networks that is mainly based on efficient symmetric cryp-
tography, with asymmetric cryptography used only for the
distribution of initial key commitments. We show, through
both theoretical examination and simulations, that SEAR
provides better security with significantly less overhead than
other existing secure AODV protocols.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Security
and protection

General Terms
Security, Performance

Keywords
Authenticator, one-way hash function, SEAR

1. INTRODUCTION
The Ad hoc On-demand Distance Vector routing proto-

col(AODV) [3] is one of the more popular routing algorithms
for MANETs and mesh networks. Unfortunately, providing
a secure and trustworthy version of AODV has been elu-
sive. Current secure AODV protocols, such as SAODV [7]
and ARAN [6], have significant security weaknesses. For in-
stance, both SAODV and ARAN provide message authentic-
ity only when all intermediate nodes are trustworthy, which
is an overly restrictive assumption.

The nature of the AODV protocol has made it challenging
to verify routing messages without knowledge of other nodes
on the path. In AODV, the optimum routes are selected by
choosing the path with the largest sequence number and
smallest hop counts. Therefore, the adversaries can easily
achieve the routing disruption goal by manipulating the se-
quence number and hop count fields in the routing messages
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in such a way that these false routing messages appear to
be a better path to reach the destination.

In this paper, we present a secure AODV protocol, which
we call the SEAR (Secure Efficient Ad hoc Routing) proto-
col, that uses one-way hash functions to construct authen-
ticators associated with each node. Route error messages
are protected through a variation of the broadcast authenti-
cation scheme TESLA [5]. SEAR is the first secure AODV
protocol to provide comprehensive solutions to securing both
sequence numbering and hop counts simultaneously. Fur-
ther, SEAR mainly involves highly efficient symmetric cryp-
tography and requires asymmetric cryptography only in the
initial bootstrap phase. Compared to existing secure AODV
routing protocols, SEAR provides better security with sig-
nificantly less overhead.

2. RELATED WORK
Secure routing in ad hoc networks has become an increas-

ingly important topic, and many routing protocols have been
proposed to secure ad hoc networks under different attack
models [1, 2]. A brief summary of several notable works
follows. Hu et. al proposed the Secure Efficient Ad hoc
Distance vector routing protocol (SEAD) [1], which is based
on the Destination Sequenced Distance Vector (DSDV) [4]
routing protocol. An on-demand secure routing protocol,
known as Ariadne [2], was also proposed to secure DSR.

There are two secure routing protocols proposed to ad-
dress the vulnerabilities in AODV algorithms, SAODV [7]
and ARAN [6]. Zapata et. al. proposed Secure AODV
(SAODV) [7] to protect routing messages transmitted in
AODV. Two mechanisms were incorporated into AODV to
secure routing messages: digital signatures to authenticate
non-mutable fields and hash chains to secure mutable fields.
Sanzgiri et. al. designed another secure AODV algorithm,
Authenticated Routing for Ad hoc Networks (ARAN) [6].
Similar to SAODV, each node has a certificate signed by a
trusted certificate authority. ARAN achieves security via
the usage of signatures on a hop-by-hop basis.

3. THREAT ANALYSIS FOR AODV
AODV does not define any security mechanisms, which

makes a network based protocol vulnerable to numerous
threats. These threats include AODV message forgery and
modification attacks. Other vulnerabilities that are not spe-
cific to AODV and can be combated through generic tech-
niques. In this section, we will discuss different threats that
we face while securing AODV.

Outright forgeries are the most obvious threat against
AODV. Since AODV defines no message authenticity mech-
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Figure 1: SEAR authenticator hash chain.

anisms, an adversary can forge AODV RREQs, RREPs or
RERRs on behalf of other nodes. A related problem is that
an intermediate node can alter a legitimate AODV message.
For instance, attackers can affect the routing by decreasing
the AODV hop count or increasing sequence numbers.

The proposed SEAR protocol addresses all above attacks
against wireless ad hoc networks. The traditional philosophy
to protect the modification of the routing messages is to
apply authentication to prevent the alternation of all fields
included in the routing messages. In contrast, SEAR allows
for the alteration of certain fields in routing messages, but
it guarantees that such an alteration will not result in any
benefit to an adversary.

4. SEAR PROTOCOL
SEAR provides routing message authenticity via the use

of one-way hash functions to construct a set of hash values,
called authenticators, associated with each node. RERR
messages are protected through a variation of TESLA [5].

4.1 Assumptions
We assume that each node A has a pair of public/private

keys KA, K−1
A . In order to protect RERR messages, we as-

sume even sequence numbers are used for messages that orig-
inate from the destination, while odd sequence numbers are
used for those messages that originate from other nodes [4].
We will employ a variation of TESLA to provide authentic-
ity verification of RERR messages. Hence, we assume that
all nodes are loosely time synchronized with their neighbors.

We also assume that attackers do not control a set of
nodes that partition the network. Finally, for the purpose of
providing route freshness and authenticity, we assume that
caching mechanisms are disabled on all nodes.

4.2 Initial Bootstrapping
We require that each node maintains two hash chains in

SEAR. Firstly, each node constructs an authenticator hash
chain to protect the sequence numbers and hop counts for
routing packets associated with routes to that node. Sec-
ondly, each node creates a TESLA key chain for authenti-
cating RERR messages. These two chains need to be cre-
ated, and their initial key value commitments need to be
delivered securely during the bootstrap procedure.

We begin by providing a high-level overview of the usage
of the authenticator hash chain. For discussion, let us de-
note m to be the maximum hop count that exists between
any two network nodes, and n + 1 to be the length of the
hash chain. The authentication hash chain {h0, h1, · · · , hn}
is generated using a one-way hash function, H, via the recur-
sion hj+1 = H(hj), with hn corresponding to the initial com-
mitment for this hash chain. The values of the hash chain,
which are called authenticators, are partitioned and used ac-
cording to the sequence numbers and hop counts associated
with the routing messages they protect. A consequence of
the one-way function and the partitioning of the authentica-
tors is the fact that other nodes with smaller even sequence
numbers will not be able to generate hashes for higher even

sequence numbers. For authenticators associated with each
even sequence number, other nodes with higher hop counts
will not be able to generate hashes for lower hop counts. In
SEAR, each individual hop for each even sequence number
has a corresponding hash value. In contrast, for RERR mes-
sages, we use odd sequence numbers and, since they do not
contain a hop count field, we only associate one hash value
for each odd sequence number. In order to allow nodes to
transmit RERR messages, any node other than the destina-
tion that has an even sequence number should also have the
corresponding next higher odd sequence number so that it
may transmit a RERR message. Consequently, authentica-
tors are broken down into groups of m + 1 consecutive hash
values. These groups of m + 1 hash values will be associ-
ated with an even and odd sequence number in a manner
that is the reverse of the hash chain generation procedure.
For a specific group of m + 1 values, one hash value will be
assigned to each hop associated with an even sequence num-
ber. As noted, the remaining one hash value is associated
with the odd sequence number and is used in authenticating
RERR messages. In order to follow the above discussion, we
present a diagram that depicts the typical structure of the
hash chain in Fig. 1.

Attackers cannot decrease the hop count field, but they
can still attempt to commit another type of fraud where
they transmit or forward routing messages they receive di-
rectly, without incrementing the hop count field. In order
to prevent such “same hop count fraud”, the node identity
should be encoded into the hash values to form an authen-
ticator hash tree, as was used in SEAD [1]. Consequently,
each node cannot forward routing messages with authenti-
cators encoded with another node’s identity, and they must
increase the hop count of RREQs and RREPs. We note that
for small networks, each node can encode its identity into
the hash tree directly, and no adversary can derive its value
from neighbors’ hash values that correspond to the same
hop count. For larger networks, we use a technique similar
to in SEAD [1], where γ-tuple values are used to encode
node identities into hash values. Now instead of having a
unique leaf hash value for each node, each node will have γ
leaf hashes.

In order to simplify the description of SEAR in the re-
maining part of this section, we will only include a discussion
involving the one-way hash chain authenticators.

4.3 Securing Route Discovery
Authenticators can be incorporated into RREQ messages

to protect the originator sequence number, destination se-
quence number and hop count. In AODV, whenever the
source needs a route, it broadcasts a RREQ:

S → All, {S, D, ID, SrcNum, DstNum, hop}
where S is the source address, D is the destination address,
ID is the RREQ id, SrcNum is the source sequence number,
DstNum is the last destination sequence number known to
the source, and hop is the number of hops to the source
traversed so far.

Let vs,i,c denote the hash authenticator for node S, with
sequence number i and hop count c. Assume that the next
even sequence number for the source is 2i, and the most
recent destination sequence number known by the source is
j with hop count c. The source thus sends out

S → All, {S, D, ID, 2i, vs,2i,0, j, vd,j,c, 0, HERR}
where HERR is used in authenticating RERRs, which will
be further discussed in Section 4.5. Each neighbor A will
first check the authenticity of the authenticators vs,2i,0 and
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vd,j,c with the authenticator commitments. If the verifi-
cation fails, the routing message is ignored. Otherwise, A
applies the hash function on the authenticator vs,2i,0 to ob-
tain the corresponding one hop authenticator vs,2i,1. If A
has a larger destination sequence number j′ with hop count
c′, it will replace vd,j,c with vd,j′,c′ . Additionally, A replaces
HERR with its own HERR′. A thus forwards,

A → All, {S, D, ID, 2i, vs,2i,1, j
′, vd,j′,c′ , 1, HERR′}

A has a larger DstNum

A → All, {S, D, ID, 2i, vs,2i,1, j, vd,j,c, 1, HERR′}
Otherwise.

The procedure repeats until the RREQ reaches the destina-
tion or the TTL expires.

Authenticators for even, higher sequence numbers can
only be released by the node with hop count 0, thus other
nodes cannot release a new, even sequence number or same
even sequence number with smaller hop count.

4.4 Securing Route Establishment
The sequence number and hop count in RREP messages

can be secured in a manner similar to the approach taken to
secure these fields in RREQ messages. Lifetime is usually
a system-wide configuration parameter, and hence we don’t
need to explicitly secure it. The destination or intermediate
nodes that have valid routes with equal or higher sequence
numbers unicast

D → S, {S, D, DstNum, hop, lifetime}
to the originator of the RREQ. For security purposes and to
provide freshness of routes, we assume that caching mecha-
nisms are disabled on all nodes. Therefore, only the desti-
nation can initiate RREPs in SEAR. Assume the next even
sequence number of the destination is 2j, then the destina-
tion unicasts the following RREP to the originator,

D → S, {S, D, 2j, vd,2j,0, 0, lifetime, HERR},
where HERR is used to authenticate RERR messages,

which will be discussed in section 4.5. Neighbor A will first
check the authenticity of the authenticator, then it will apply
the one-way hash function to the authenticator vd,2j,0 to get
vd,2j,1. It then replaces vd,2j,0 with vd,2j,1. Additionally, A
replaces HERR with its own HERR′. A forwards,

A → S, {S, D, j, vd,2j,1, 1, lifetime, HERR′}.
The procedure repeats until RREP reaches the originator.

4.5 Securing Route Maintenance
Once a node detects a link failure for the next hop or

receives a RERR from a neighbor for one or more active
routes, a RERR message is generated and broadcasted to
all upstream neighbors.

The original format of a RERR created by node A is

A → upstream neighbors, {D − list, DstNum− list}
with D − list describing the list of unreachable destination
addresses and DstNum− list describing the corresponding
destination sequence number list with each sequence num-
ber one larger than the newest even destination sequence
number known by A.

First let us look at how the HERR fields attached in the
RREQ and RREP messages are created. Assume that the
last even source sequence number before forwards RREQs
for originator node D, or last even destination sequence num-
ber before forwards RREPs for destination node D known

by A is 2j, A can derive the next odd sequence number au-
thenticator vd,2j+1,0 via applying the one-way hash function.
A will form the RERR message for this sequence number,

RERR′ = {Nonce, D, 2j + 1, vd,2j+1,0}.
Let kA,t denote the TESLA key for node A used in time
interval t. Then A attaches

HERR = {H(RERR′), MACkA,t(H(RERR′))}
to the RREQ or RREP messages and saves the nonce and
TESLA key in the error messages for later use. When nodes
receive the RREQs and RREPs, they buffer the HERR con-
tained in the messages. Further, they replace the HERR in
the messages with their own HERR′ and save the corre-
sponding information while forwarding RREQ and RREP
messages.

Later, when A detects a link failure, or receives a RERR
from a neighbor for one or more active routes, it will send
a RERR for all unreachable destinations sharing the same
next hop with the saved nonce list, corresponding TESLA
release key list and destination sequence number list in the
same RERR message. If any of the TESLA keys are not
ready to be released yet, A will hold the RERR until it can
release all the keys. The new format of RERR is,

RERR = {Nonce− list, TESLAkey − list,

D − list, (2j + 1)− list, vd,2j+1,0 − list}.
The upstream nodes extract the information needed from
the various lists to reconstruct the HERR and to verify the
RERR instantaneously.

5. ANALYSIS AND DISCUSSIONS
In this section, we first provide a comparison of SEAR’s

performance and security versus other existing secure AODV
routing protocols. Then we present a concrete comparison
through ns2 simulations.

5.1 Performance and Security Evaluation
We will compare SEAR with ARAN and SAODV in terms

of their protocol efficiency and security characteristics.
Computation Efficiency: Both of ARAN and SAODV re-

quire the originator to sign each packet it sends, and inter-
mediate nodes to verify the signature for each routing packet
it processes. On the other hand, SEAR is mainly based on
symmetric cryptography. It only requires the originator and
intermediate nodes to apply a computationally efficient one-
way hash function to generate and verify authenticators.

Communication Overhead: In ARAN, variable number of
certificates and signatures are added to all routing messages.
In SAODV, there are several hashes and various number of
signatures introduced in RREQ/RREP single and double
signature extensions and RERR. In contrast, SEAR only
requires hashes, a key or a nonce added in RREQ, RREP
and RERR routing messages. Typically, the size of the hash
fields and MACs are much smaller than the size of a signa-
ture, leading to SEAR requiring less communication over-
head than either ARAN or SAODV.

Message Forgery: Both SAODV and ARAN append dig-
ital signatures to each routing message to prevent message
forgery. SEAR uses the inherent properties of the AODV
routing algorithm to assure that, even if an adversary at-
tempts to forge old or less optimal routes, these routes will
be suppressed and not introduce any benefit to an adversary.

Increase Sequence Number: SAODV stops the adversaries
from increasing the sequence numbers by adding digital sig-
natures to each routing message. While SEAR achieves the
same goal by using efficient one-way functions.
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Decrease Hop Count: Both of SAODV and SEAR pre-
vents the decrease of the hop count by using one-way func-
tions.

Same Hop Count Fraud: SAODV only prevents the de-
crease of the hop count, while attackers can still transmit
routing messages with the same hop count as the messages
they receive. SEAR encodes node identity into sequence
numbers and hop counts, hence attackers would have to
increase the hop count as they forward the messages. In
ARAN, malicious nodes can forward the routing packets
without replacing the signature. Malicious nodes can even
strip the outer signature and replay these messages as if it
were the source.

Signature DoS: Both ARAN and SAODV are based on
expensive public key operations, therefore both are suscep-
tible to signature DoS attacks. Since SEAR is based on
efficient one-way hash functions during the main operation
of the protocol, it is not vulnerable to signature denial of
service attacks after the initial bootstrap phase.

In summary, SEAR’s design and use of symmetric crypto-
graphic operations gives significantly less computation and
communication overhead with better security than SAODV
or ARAN.

5.2 Performance Analysis
We used ns2 to study the performance efficiency of SEAR

and SAODV when there is no attacker. We assume that all
nodes were loosely time synchronized with each other with
fixed synchronization errors. Further, we assume that each
node had securely distributed the authenticator commit-
ments to every other node in the network and that TESLA
key commitments were established with neighbors.

In the simulations, nodes moved following the random
waypoint mobility model with a maximum speed 20m/s.
The simulation space was a rectangular region with a size
of 1500m× 300m with 50 nodes. The maximum end to end
network delay was 0.1s. The communication range for each
node was set to 250m. There were a total 15 pairs of com-
municating nodes, with each source sending out constant bit
rate (CBR) traffic with packet sizes of 64 bytes at a rate of 4
packets/second. The link bandwidth was set to 1Mbps. The
hash size, MAC size and key size were set to 80 bits, while
the signature size was set to 1024 bits. The TESLA time in-
terval was set to 1s, and the synchronization error was set to
0.1s. The time to generate a signature was set to 10ms and
the time to verify a signature was set to 1ms. We omitted
the time needed to compute hashes in the simulations.

We studied the performance of SEAR for both no identity
encoded and with identity encoded versions. Each node had
a unique hash which corresponded to its identity. Further,
we compared the performance of SEAR with SAODV under
the same network topology and simulation parameters. In
order to maximize the advantages of SAODV, we performed
the simulations for both cache-enabled and cache-disabled
versions of SAODV. We evaluated the performance of SEAR
by comparing the following metrics to those of AODV and
SAODV:Packet delivery ratio, routing overhead (in terms of
number of packets), routing overhead (in terms of number
of bytes), and packet delivery delay.

The simulation results are shown in Fig. 2, which is
based on an average over 60 runs of different movement
files for each pause time. The 95% confidence intervals for
the metrics are plotted as error bars. The packet deliv-
ery ratio of SEAR with either identity encoded or without
identity encoded degrades at most 1% for all pause times,
which illustrates that SEAR performs better than both ver-
sions of SAODV. The packet delivery ratio for SAODV with
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Figure 2: Performance comparison for AODV,
SEAR and SAODV. (a) PDR, (b) Overhead in pack-
ets, (c) Overhead in bytes, and (d) delivery delay.

cache-enabled is better than that for SAODV without cache.
The routing overhead in terms of the number of packets for
SEAR is at the same level as AODV. For SEAR, the routing
overhead in terms of bytes transmitted when identity is not
encoded is about twice the amount of baseline AODV. The
routing overhead in terms of number of bytes when identity
is encoded is higher than without identity encoded. We also
observed that the amount of bytes needed for routing over-
head was roughly 4 times larger for SAODV than SEAR. For
SEAR, the average packet delivery delay is slightly increased
due to the increased communication overhead, while the in-
crease in delay for SAODV is roughly 3 times with cache
enabled and 5 times without cache support. Overall, SEAR
outperforms both SAODV versions in all of the performance
metrics that we examined.

6. CONCLUSION
In this paper, we have proposed SEAR protocol for wire-

less ad hoc networks. SEAR is mainly based on symmetric
cryptography, while asymmetric cryptography is only used
for the initial keys distribution. We have shown through
both theoretical examination and simulations that SEAR is
less vulnerable to routing attacks when compared to existing
secure AODV protocols.
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