
CRAFT: A New Secure Congestion Control Architecture

Dongho Kim †, Jerry T. Chiang †, Yih-Chun Hu †, Adrian Perrig ‡, and P. R. Kumar †

†Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, IL, USA
‡Department of Electrical and Computer Engineering, Carnegie Mellon University, PA, USA

†{dkim99,chiang2,yihchun,prkumar}@illinois.edu, ‡perrig@cmu.edu

ABSTRACT

Congestion control algorithms seek to optimally utilize network re-

sources by allocating a certain rate for each user. However, mali-

cious clients can disregard the congestion control algorithms im-

plemented at the clients and induce congestion at bottleneck links.

Thus, in an adversarial environment, the network must enforce the

congestion control algorithm in order to attain the optimal network

utilization offered by the algorithm.

Prior work protects only a single link incident on the enforce-

ment router, neglecting damage inflicted upon other downstream

links. We present CRAFT, a capability-based scheme to secure all

downstream links of a deploying router. Our goal is to enforce a

network-wide congestion control algorithm on all flows. As a ref-

erence design, we develop techniques to enforce the TCP conges-

tion control. Our design regulates all flows to share bandwidth re-

sources in a TCP-fair manner by emulating the TCP state machine

in a CRAFT router. As a result, once a flow passes a single CRAFT

router, it is TCP-fair on all downstream links of that router.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—Secu-

rity and protection

General Terms

Security

Keywords

TCP, Congestion Control

1. INTRODUCTION
The congestion control problem of fairly distributing network

resources among users is a long-standing problem in networking

research community. While most work in congestion control as-

sumes that all entities follow the rules specified by a congestion

control algorithm, some work has also considered an adversarial

environment where a misbehaving user deviates from the specified

rule [10, 11], thereby gaining network resource allocation that ex-

ceeds his fair share or suppressing the network resource allocated

to others.

Some work adopts a reactive approach to defend against misbe-

having users. Floyd et al. [4] use a TCP throughput equation to

determine the proper throughput for a flow and categorize any flow

Copyright is held by the author/owner(s).
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
ACM 978-1-4503-0244-9/10/10.

N flows 2N flows

Bottleneck point

FA

RD,1

L1
L2 L5RL,1

RL,3

RL,2

L3 L4

L6

Figure 1: An example that illustrates single-link protection is

insufficient for protecting downstream links.

using more than its fair throughput as “not TCP friendly”. Sto-

ica et al. [12] estimate the rate of a flow and assign that flow a fair

share of a link according to the estimated rate. In contrast to the

protocols proposed by Floyd et al. and Stoica et al., fair queue-

ing [3] is a preventive approach where a router allocates a fixed

amount of bandwidth to a flow or the aggregate of several flows

when that router experiences congestion.

Problem. We consider the purpose of these schemes to be fair

sharing of network bandwidth. One might view congestion con-

trol as a scheme that rate-limits traffic before congestion happens

to avoid wasting network bandwidth. The fairness of congestion

control algorithm can be formalized using an optimization frame-

work [7]. In this context, past work for securing fair rate allocation

provides desirable properties for the fair sharing of the link immedi-

ately behind a deployed router. However, these schemes have a lim-

itation in early phases of deployment where some routers may not

have yet deployed the scheme. In such situations, the link behind a

legacy router can be prone to congestion. Since different links have

a different number of traversing flows and different amount of link

bandwidth, the fair share on a deployed link is not necessarily the

fair share on a downstream legacy link. This limitation motivates

us to study a minimal deployment scheme that securely provides

fair sharing of downstream links.

Illustration. We illustrate how a single-link protection mecha-

nism is not sufficient to enforce that every flow in the network fairly

shares network bandwidth at its bottleneck link. Figure 1 shows a

network in which all links have the same link capacity and some

routers do not deploy any protection mechanism. In this example,

we use the concept of fairness as equal share of bandwidth. Let

there be a flow that traverses multiple links together with different

number of flows at each link. The bandwidth-fair rate of a flow

traversing a link is simply the bandwidth of the link divided by the

number of flows sharing the link. In this example network, flow FA

and N other flows traverse router RD,1 that deploys a single-link

protection mechanism, enforcing that each flow gets 1

N+1
of the

link capacity. That is, FA shares link L2 with N other flows in a

bandwidth-fair manner. Suppose FA’s destination is different from

705

that of the other N flows; then FA, but not any of the N other flows,

would traverse the legacy router RL,2. This legacy router does not

employ any fairness-guaranteeing schemes. If 2N other flows also

traverse through the router RL,2, FA could obtain roughly twice as

much bandwidth as each of the other 2N flows could.

Challenge. One possible solution of this problem is letting a de-

ployed router obtain information about the status of a bottleneck

link and adjust flow rates accordingly. However, it is difficult to es-

timate the proper fair share of bottleneck link bandwidth. Though

the router incident to a bottleneck link can deliver enough infor-

mation for a deployed router to adjust flow rates, this approach re-

quires the router incident to the bottleneck link to do some work.

In other words, it still requires some level of deployment.

Our approach. To provide network-wide protection against mis-

behaving flows, we securely enforce TCP behavior by emulating

the TCP state machine of each flow. The rationale behind enforcing

TCP is that TCP is an end-to-end protocol that provides network-

wide fair rate. Since TCP is end-to-end, it treats the network as

a black box and does not require any information about the fair

share of a bottleneck link. Different from our example, our goal

of enforcing TCP fairness is not to assign equal rates since TCP

rate of each flow depends on several factors, such as round trip

time. There is theoretical work [9] that analyzes the fairness of TCP

using optimization-based framework and obtains a utility function

optimized by TCP.

In our poster, we present CRAFT (Capability-based Regulation

of All Flows and Traffic), a secure congestion control architecture

that provides network-wide fairness in a partially-deployed net-

work.

2. PROTOCOL
In this section, we present how a CRAFT router can securely

emulate the TCP state machine of a traversing flow. To better un-

derstand the concept of our approach, we first present a strawman

design. Our strawman design illustrates a method that emulates the

TCP congestion control protocol [1] with high overhead in an ide-

alized environment where all packets reach the destination in order.

We provide careful treatment on how CRAFT relaxes these limita-

tions in Section 2.2.

2.1 Strawman Design
The TCP congestion control assumes that a pair of sender and re-

ceiver would behave in a manner specified in the protocol; specif-

ically, the receiver honestly acknowledges receiving a packet and

the sender increases the rate of the flow as specified by TCP upon

receiving that acknowledgement. However, in an adversarial envi-

ronment, a sender can arbitrarily increase its rate without having

received any acknowledgments. Furthermore, a receiver can send

acknowledgments without actually having received a packet [10]

since TCP acknowledgments are not cryptographically dependent

on the data in the TCP packet. Our strawman design illustrates how

we can prevent a TCP flow from misbehaving.

Intuition. The main objective of our strawman design is to ensure

that a downstream packet is indeed received by the receiver and

the acknowledgment is indeed received by the sender. A strawman

router can generate a Random Value for each packet to verify that

the receiver has received a downstream packet, that the receiver has

sent the Random Value back to the sender in its acknowledgment

packet, and that the sender has received that acknowledgment.

When the strawman router sees a downstream packet, it inserts

a Random Value into the packet, routes the packet to the receiver,

and stores the Random Value and its associated flow in the router’s

memory. The receiver, upon receiving the packet, sends the Ran-

CRAFT RouterSender ReceiverLegacy Router

Pf,i

Emulated

TCP state

Congestion

window

Cf,i

Cf,i

1. Generate 3. Calculate

5. Forward

Cf,i

6. Verify

Pf,i

2. Receive

Cf,i

4. Receive

Figure 2: Capability-based enforcement of TCP congestion

control algorithm. A CRAFT router generates a pre-capability

(Pf,i) for a packet (i) of a flow (f). After the receiver gets the

pre-capability, the receiver calculates and forwards a new ca-

pability (Cf,i) to the sender. The sender includes received ca-

pability to the CRAFT router in a future packet.

dom Value back to the sender along with the TCP acknowledgment.

The next time the sender wishes to send a packet to the receiver, the

sender includes in the packet the Random Value he received that

was embedded in the acknowledgment of the previous packet.

Since we assumed that the path from the sender to the receiver

does not change, the data packet including the Random Value will

reach the strawman router. The strawman router then verifies that

the Random Value included in the packet is the same as that stored

in the router. Since the Random Value is generated by the straw-

man router, a matching pair of Random Values in the packet and in

the router’s local memory implies that the previous packet was suc-

cessfully received and acknowledged. In other words, the receiver

and the sender collaboratively acknowledge to the router that the

Random Value and the packet therein were successfully received.

This architecture addresses the minimal trust since a strawman

router is only required to trust itself. Our strawman design also ad-

dresses the asymmetry of Internet path since our strawman router

does not require upstream packets or acknowledgment packets to

traverse the same strawman router that the downstream packets tra-

versed. Our CRAFT protocol preserves these properties.

2.2 CRAFT
Since a strawman router needs to maintain a Random Value for

each outstanding packet, the required memory space of a straw-

man router can be huge with a large number of outstanding packets.

CRAFT relaxes this limitation to efficiently emulate the TCP state

of each flow in the real Internet environment. We do not focus on

compliance of any particular TCP variant, but instead, on providing

techniques to efficiently handle reordering and loss as specified by

the standard document [1]. Since we design CRAFT without any

specific TCP variants in mind, CRAFT emulates the congestion

window (cwnd) of a flow using the maximum allowed cwnd based

on the standard. Usually, TCP variants differ only in the manage-

ment of cwnd in response to packet losses. Thus, by properly mod-

ifying our proposed techniques in emulating the cwnd, CRAFT can

be readily adapted for specific subsets of most TCP variants.

The overview of CRAFT operation is illustrated in Figure 2. Due

to space constraint, we focus on how we conserve the memory of

router while keeping security. We briefly sketch how to calculate

the cwnd for a flow and how to handle packet loss and reordering.

The inefficient use of memory space in our strawman design re-

sults from the fact that a Random Value inserted into a packet cor-

responds to only a single packet and the Random Value for each

outstanding packet should be stored for verification. We thus let a

706

Packet ID Random Value

Packet ID Random Value

For all outstanding packets

Lid Lrandom

(a) Strawman design

Key

ACK ID Capability

Lid Lrandom

(b) CRAFT

Figure 3: Comparison of router memory usage between straw-

man design and CRAFT for a flow: Lid and Lrandom are refer-

ence length for comparison

CRAFT router insert into each packet a secret pre-capability, which

is calculated using the Packet ID. We then define the capability of a

flow to be an aggregate of all the past pre-capabilities inserted into

its packets.

Since the pre-capability of a packet is calculated using its Packet

ID, a CRAFT router does not need to store all prior pre-capabilities

issued to a flow, thereby conserving the limited memory space of a

router. However, CRAFT needs to provide unpredictability for pre-

capability and capability as Random Value does. CRAFT provides

unpredictability by utilizing computationally efficient keyed MAC

(Message Authentication Code). A CRAFT router uses its secret

key K and a cryptographically secure hash function g to derive a

pre-capability Pf,i: Pf,i = g(K, f, i), where f is the flow ID, and

i is the Packet ID. Flow ID is a large and unique value randomly

generated by the router when the flow is created.

We further elaborate on the g function with a telescoping con-

struction: g(K, f, i) = EK(f ||i)⊕ EK(f ||i+ 1) where EK rep-

resents a computationally efficient keyed MAC such as HMAC [8]

and || is the concatenation operator. The telescoping construction

enables the CRAFT router to calculate a capability corresponding

to a set of contiguous pre-capabilities in constant time. If EK is

a hash function in a Random Oracle Model [2], then EK(f ||i) is

indistinguishable from a random number because the pair (f, i) has

not been seen before. Since K is known only to the CRAFT router,

it is computationally inefficient to guess EK(f ||i). Moreover, Pf,i

is also indistinguishable from a random number.

When the receiver receives a packet (j) with a pre-capability

(Pf,j), the receiver constructs the capability (Cf,j) associated with

the packet. A capability (Cf,j) is defined to be the exclusive-or of

all received pre-capabilities up to j: Cf,j = Pf,0 ⊕ . . . ⊕ Pf,j .

By using the exclusive-or function, we can take advantage of a de-

sirable property: if any input and its distribution are unknown, the

output is uniformly distributed over the domain, yielding the largest

uncertainty and secrecy in the information theoretic sense. More-

over, since Pf,j = EK(f ||j) ⊕ EK(f ||j + 1), the capability can

be calculated efficiently using Cf,j = EK(f ||0)⊕EK(f ||j + 1).
Hence, we need only a single xor operation to calculate the capa-

bility associated with a set of contiguous pre-capabilities.

In the above example, capability Cf,j proves that all packets

from Packet ID 0 to j are received by a receiver. This capability

and j are delivered to the sender and are used to prove the receipt of

packets to the CRAFT router. We call j as ACK ID. When CRAFT

router receives Cf,j and j, it verifies the received capability. If the

received capability is valid, CRAFT router increases the cwnd for

the corresponding flow following the TCP standard.

Our construction of pre-capability and capability eliminates the

need to store a Random Value for each outstanding packet. As

shown in Figure 3(b), the router only needs fixed size of space.

When a network experiences congestion, a pre-capability may be

lost. Then, a contiguous capability Cf,j = Pf,0⊕. . .⊕Pf,j cannot

be constructed. To handle this loss, the receiver discloses the loss

to the sender, and the sender discloses that loss together with the

rest of non-contiguous capability to CRAFT router. For example,

if a pre-capability for packet ID k(< j) is lost, corresponding ca-

pability is Cf,j = Pf,0 ⊕ . . . ⊕ Pf,k−1 ⊕ Pf,k+1 ⊕ . . . ⊕ Pf,j .

CRAFT router verifies the received non-contiguous capability tak-

ing the disclosed loss into consideration.

3. LIMITATIONS
Per-Host Fairness. CRAFT considers per-flow fairness since it

emulates the state machine of a TCP flow. To use CRAFT to en-

force host-fairness, a scheme to guarantee a fair share of the number

of connections among hosts is necessary. Without such a scheme,

an attacker can initiate an excessive number of flows.

Per-Flow Operation. CRAFT achieves space-efficiency at the ex-

pense of hash calculation. If the computation overhead is signif-

icant, CRAFT may not be practical. However, a recent software

router implementation [5] achieves about 10 Gbps throughput for

forwarding 64 byte packets with IPsec operation. We believe that

an ASIC implementation can further improve the throughput.

Vulnerability of TCP. CRAFT prevents a flow from deviating from

the flow rate specified by the TCP standard. There can be other at-

tacks against TCP [6,10]. Our goal is to enforce TCP behavior, not

to fix all possible vulnerabilities of the TCP congestion control.

4. POSTER ORGANIZATION
Due to space constraint, we do not present our evaluation results

in this proposal. In our poster, we will present evaluation results for

the overhead and the effectiveness of CRAFT as well as motivation

and basic architecture.

5. REFERENCES
[1] M. Allman, V. Paxson, and W. Stevens. TCP congestion control. RFC 2581,

April 1999.

[2] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for

designing efficient protocols. In Proceedings of CCS ’93, pages 62–73, New

York, NY, USA, 1993. ACM.

[3] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a fair

queueing algorithm. In In Proceedings of SIGCOMM ’89, pages 1–12, New

York, NY, USA, 1989. ACM.

[4] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in the

internet. Networking, IEEE/ACM Transactions on, 7(4):458 –472, Aug 1999.

[5] S. Han, K. Jang, K. Park, and S. Moon. Packetshader: a GPU-accelerated

software router. SIGCOMM 2010.

[6] A. Herzberg and H. Shulman. Stealth dos attacks on secure channels. In

Proceedings of NDSS ’10, 2010.

[7] F. Kelly, A. Maulloo, and D. Tan. Rate control in communication networks:

shadow prices, proportional fairness and stability. In Journal of the

Operational Research Society, volume 49, 1998.

[8] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-hashing for message

authentication. RFC 2104, February 1997.

[9] S. H. Low and D. E. Lapsley. Optimization flow control. i. basic algorithm and

convergence. Networking, IEEE/ACM Transactions on, 7(6):861 –874, Dec.

1999.

[10] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson. TCP congestion

control with a misbehaving receiver. SIGCOMM CCR, 29(5):71–78, 1999.

[11] R. Sherwood, B. Bhattacharjee, and R. Braud. Misbehaving TCP receivers can

cause Internet-wide congestion collapse. In CCS ’05: Proceedings of the 12th

ACM conference on Computer and communications security, pages 383–392,

New York, NY, USA, 2005. ACM.

[12] I. Stoica, H. Zhang, and S. Shenker. Self-verifying CSFQ. In Proceedings of

INFOCOM ’02, volume 1, pages 21 – 30 vol.1, 2002.

707

