
FlowTele: Remotely Shaping Traffic on Internet-Scale Networks

Bo-Rong Chen1,† Zhuotao Liu2,† Jinhui Song1 Fanhui Zeng1 Zhoushi Zhu1
Siva Phani Keshav Bachu1 Yih-Chun Hu1

1 University of Illinois at Urbana-Champaign 2 Tsinghua University

ABSTRACT
Internet content providers often deliver their content through band-
width bottlenecks that are out of their control. Thus, despite often
having massively over-provisioned upstream servers, the content
providers still cannot control the end-to-end user experience. In
this paper, we explore the possibility of remote traffic shaping, al-
lowing the content provider to allocate its share of a remote bottle-
neck link across its users using a metric other than TCP fairness,
while remaining TCP-friendly to cross traffic on the bottleneck link.
To evaluate this approach, we designed FlowTele, the first system
that shapes outbound traffic on an Internet-scale network to opti-
mize provider-selected metrics, using source control with neither
in-network support nor special client support. Our extensive eval-
uations over the Internet show that by strategically reallocating
bandwidth among provider-owned co-bottlenecked flows, FlowTele
improves the provider’s total revenue by roughly 20%∼30% in vari-
ous network settings, compared with both (i) status quo TCP fair-
share and (ii) recent practice by content providers that proactively
throttles video quality during the COVID-19 pandemic, while being
TCP-friendly to cross-traffic. Besides revenue, we also study other
metrics, such as QoE fairness, that a content provider may like to
optimize using FlowTele.

CCS CONCEPTS
• Networks → Network management;
ACM Reference Format:
Bo-Rong Chen1,† Zhuotao Liu2,† Jinhui Song1 Fanhui Zeng1
Zhoushi Zhu1 Siva Phani Keshav Bachu1 Yih-Chun Hu1 . 2022.
FlowTele: Remotely Shaping Traffic on Internet-Scale Networks. In The
18th International Conference on emerging Networking EXperiments and
Technologies (CoNEXT ’22), December 6–9, 2022, Roma, Italy. ACM, New
York, NY, USA, 20 pages. https://doi.org/10.1145/3555050.3569139

1 INTRODUCTION
Internet traffic increasingly originates from a small number of large
content providers. For instance, six major content providers head-
quartered in the USA send about 43% of global Internet traffic [13].
Although these content providers have massively provisioned their
own network infrastructure through datacenters in different loca-
tions [54], private backbone WANs [30] and Internet peers [53, 64],

†: co-primary authors with equal contribution.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CoNEXT ’22, December 6–9, 2022, Roma, Italy
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9508-3/22/12.
https://doi.org/10.1145/3555050.3569139

their traffic may still experience bottlenecks on the downstream
links beyond their control before reaching their customers. Google
has consistently published “Video Quality Reports” [21] to raise
consumer awareness that some ISPs do not provide Google with
sufficient bandwidth to serve HD video to their mutual customers.
Such bandwidth limitations sometimes are introduced by traffic
engineering where ISPs can limit traffic they deem undesirable; for
example, Verizon demanded interconnection fees from Level3, and
when Level3 refused to pay, Verizon limited bandwidth at Level3’s
peering points [58]. The FCC also reports that some ISPs lack suf-
ficient bandwidth to handle peak bandwidth demand [10]. More
recently, some content providers (such as YouTube and Netflix)
proactively throttled video quality to reduce bandwidth pressure
on downstream links during the COVID-19 pandemic [20, 60].

The key motivational insight for this work is that despite the
massively over-provisioned upstream network infrastructure and
widely-deployed CDNs, content providers are still unable to simul-
taneously provide all customers with the highest-quality services
because their flows often experience bottlenecks on downstream
links beyond the control of the content provider. Therefore, if a
content provider can divide its share of the downstream bottleneck
bandwidth in a manner other than TCP-fair (while remaining TCP
friendly to external cross traffic), they can shape the link bandwidth
usage towards maximizing metrics of their choice. For example,
some content providers may aim to improve social welfare, mod-
erate political extremism, improve diversity, or improve access for
disadvantaged users; YouTube [31], Facebook [19], and Twitter [46]
already disfavor certain content. Some content providers may adapt
the bandwidths they provide based on the requirements of each
style of video, increasing bandwidth for high-motion video such as
sports (as in [45]); others may improve revenue during peak hours
by favoring paid subscriptions or advertising traffic. To date, no
system exists that allows content providers to dynamically allo-
cate bandwidth for social and economic benefits despite limited
downstream network capacity.

We recognize multiple challenges to achieving such cross-flow
bandwidth reallocation on remote links in open and decentralized
networks like the Internet. First, designing allocation strategies is
non-trivial. For instance, maximizing revenue subject to bandwidth
limitations does not mean statically throttling “low-valued” users.
Rather, such optimization requires delicate cross-flow bandwidth re-
allocations backed by user value and behavior modeling to optimize
aggregate user value while minimizing impact on user retention.

Second, given a desired bandwidth allocation, content providers
cannot easily impose optimized allocations on the bottleneck link.
(i) The content providers do not own the entire path, so they cannot
deploy in-network queuing or throttling mechanisms, as providers
could in private WAN [30, 33] and datacenters [23]; (ii) the Au-
tonomous System (AS) owning the bottleneck (or slowest) link on

https://doi.org/10.1145/3555050.3569139
https://doi.org/10.1145/3555050.3569139

CoNEXT ’22, December 6–9, 2022, Roma, Italy Bo-Rong Chen, Zhuotao Liu, et al.

the path may refuse to cooperate; and (iii) the content provider
likely does not want to disclose its desired allocation policies to
these remote ASes (e.g., due to privacy concerns). Thus, the second
challenge is how to remotely enforce provider-desired allocation
policies on bottleneck links with neither in-network support at
remote ASes nor recipient networking stack upgrades.

To meet these challenges, we propose FlowTele (tele inspired by
telekinesis), the first system architecture on which content providers
can build to remotely shape its network flows based on a combina-
tion of self-selected factors, while remaining TCP-friendly to cross
traffic sharing the same downstream bottleneck path. FlowTele is
powered by a stack of innovative designs. First, we design fAlloca-
tor, which computes the per-flow bandwidth allocations to optimize
content-provider selected metrics. To demonstrate the capability of
fAllocator (and the generality of FlowTele as a whole), we instanti-
ate fAllocator with two concrete designs for optimizing economic
and social benefits, respectively, in the context of video streaming
applications, the most bandwidth hungry applications that dom-
inate the Internet traffic [9, 11]. Specifically, we design vAlloc to
optimize aggregate advertising revenue, and qAlloc to optimize
quality of experience (QoE) fairness among co-bottlenecked flows.

Second, we design fShaper, a source-control mechanism to re-
motely enforce accurate weighted fair share across a set of flows.
An abstraction of fShaper is that of a cross-flow congestion win-
dow reallocation algorithm that redistributes congestion windows
among some co-bottlenecked flows based on fAllocator’s output.
Through extensive Internet-scale evaluations, we demonstrate that
fShaper achieves both internal weighted fairness, i.e., the outbound
rates of controlled flows converge to desired weighted fair shares,
and external TCP friendliness, i.e., the controlled flows in aggregate
exhibit fairness against TCP cross traffic. Finally, based on insights
of prior work (e.g., [28]), we evaluate FlowTele based on one method
for flow co-bottleneck detection.
Contributions. To the best of our knowledge, FlowTele is the
first system architecture on which content providers can build to
reclaim complete control over their flows, even if they traverse
uncontrolled bottleneck links owned by downstream ISPs. Notably,
FlowTele simultaneously achieves source-driven and in-network traf-
fic management, a benefit that has to date been unachieved in
globally distributed and heterogeneous networks, such as the Inter-
net, where flow sources have incomplete control over in-network
routing and protocol deployment. FlowTele provides the high-speed
adaptation needed to handle peak loads to fill buffers (such as client
video buffers) of new flows while remaining TCP-friendly and man-
aging the buffers of old flows. We fully implement FlowTele in about
9900 lines of code and evaluate it through large-scale Internet exper-
iments and analytical simulations. The evaluation results show that
FlowTele can achieve a 20%∼30% improvement when optimizing ad-
vertising revenue in various network settings, compared with TCP
fairshare and a recent quality-throttling practice applied by some
content providers during the COVID-19 pandemic. Further, a single
instance of FlowTele can efficiently perform bottleneck allocations
for hundreds of flows on a single CPU thread.
Limitations. Due to the vast range of possible metrics that a
content provider may wish to optimize, this paper does not attempt
to exhaustively enumerate or evaluate all such metrics. Instead, this

User
Parameters

Desired
Metrics

Optimal Bandwidth
Allocation Solver

fAllocator

Pathneck-MF

Co-bottleneck
Detector

Scheduler Scheduler…

Cross-Flow Rate Allocator

fShaper

User Value
Distribution

Aggregate
Revenue

MCKP Approximation Solver

User Behavior
Model

User Bandwidth
Model

Aggregate
QoE

QoE Maxmin Solver

User QoE
Model

Co-
Bottleneck

Flows

Allocation
Decisions

vAlloc qAlloc

Bandwidth
Estimate

Provider-owned
Detector

Figure 1: The architecture of FlowTele. We show two instances of
fAllocator: vAlloc to optimize aggregate user value and qAlloc to
fairly distribute quality of experience.

paper aims at demonstrating the feasibility and performance of a
system across two metrics under a range of parameterizations of
user value and user behavior. As a networkmanagement technology,
FlowTele has both ethical and unethical uses. In this paper, we focus
on the technologies at the foundation of such systems, and leave
the public policy implications to future work.

2 ARCHITECTURE
We illustrate the architecture of FlowTele in Figure 1.
FlowTele Applicability. FlowTele is designed for bandwidth-
constrained applications where available bandwidth dictates user
behavior or experience, and where a variety of bandwidths all cre-
ate viable (though potentially different) experiences. Applications
such as VR gaming, videoconferencing, video livestreaming, and
federated computing could all benefit from the FlowTele architec-
ture. When flows are largely application-limited, reallocation of
bandwidth between flows brings little benefit, and the application
of FlowTele is limited. When different content is sent for different
experiences, FlowTele must control the content sent to provide
a specific experience. In video delivery, traditional client-driven
Adaptive BitRate (ABR) streaming is incompatible with FlowTele’s
need to deliver fAllocator-selected content, and some application re-
design (e.g., accommodating server-selected experiences) is needed.
In this paper, we design and evaluate FlowTele for flows emanating
from a single datacenter, and its use with distributed CDNs is left
as future work.
fAllocator Overview. The key piece that allows FlowTele to op-
timize metrics selected by the content-provider-selected across
multiple co-bottlenecked flows is fAllocator, the brain that decides
the desired bandwidth allocation among co-bottlenecked flows in
order to achieve certain metrics. Since video streaming applica-
tions are bandwidth hungry and dominate Internet traffic [11], we
describe fAllocator for such applications; however, the methodol-
ogy of fAllocator can be applied to new allocator designs for the
applications described above.

fAllocator’s goal is to find the (bitrate, client buffer) pair for
each flow that maximizes the content-provider-selected metrics
subject to some aggregate limit on required bandwidth. fAllocator
is architecturally agnostic to the provider’s choice of metric, and
even how that metric is computed. For example, a content provider
whose primary revenue source is advertising can aim to maximize
revenue, particularly during times of low bottleneck bandwidth. In
this case, the metric is aggregate user value that the provider can
extract over the bottleneck; we present vAlloc in § 3 to take this

FlowTele: Remotely Shaping Traffic on Internet-Scale Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

approach. Another example is a content provider that chooses to
provide equitable QoE, even across disparate network connections
(and consequently disparate buffer requirements). In this case, the
metric is QoE and the aggregation could be the minimum across
all metrics, i.e., aiming to maximize the experience of the lowest-
experience user. We develop qAlloc in § 4 to take this approach.
fShaper Overview. The design of FlowTele requires the con-
tent provider to shape outbound traffic to achieve the per-flow
bandwidth allocations specified by fAllocator while simultaneously
remaining friendly to non-participating traffic sharing the same bot-
tleneck links.We design fShaper, a source-control basedmechanism
to redistribute the provider’s total TCP fairshare over a bottleneck
link among the set of provider-owned flows in accordance with
fAllocator’s outputs. We implement fShaper on TCP and demon-
strate its effectiveness via substantial Internet-scale experiments.
As an entirely sender-based mechanism, fShaper relies on neither
in-network support nor special receiver implementations.
Co-Bottleneck Detection. Though not the focus of this paper,
FlowTele requires some form of co-bottleneck detection, since strate-
gic bandwidth reallocation can only be performed between co-
bottlenecked flows. FlowTele could apply any existing co-bottleneck
detection approach, such as [1, 17, 24, 25, 32, 34, 49, 51, 52, 63]. We
demonstrate a design based on a modified version of Pathneck [28]
in our experiments (§ 6.3). These experiments set a lower-bound
for co-bottleneck detection performance, since content providers
can further infer co-bottleneck links by monitoring their servers de-
ployed within the ISPs [22]. Video Quality Reports [21] also reveal
that Google has some information about ISP-induced congestion.
Application Integration. Each FlowTele application needs a fAllo-
cator, which generates allocation decisions on a per-flow basis. The
application then must send content consistent with the allocation
decision, and use fShaper as a transport to deliver that content. For
example, in our video streaming examples, the client connects to a
server-side application that takes fAllocator decisions, directs each
client to download specific chunks, and to arrange the buffer in a
specific manner. The fShaper and co-bottleneck detection mecha-
nisms are generic, applicable across all applications.

3 VALLOC DESIGN
In this section, we present vAlloc, an instance of fAllocator that
aims to maximize the aggregate user value under a downstream
bandwidth constraint.

3.1 vAlloc Ad Revenue Exploration
A key observation of vAlloc is that a user’s economic value to
a content provider may not be uniform, and may even follow a
heavy-tailed distribution. Thus, a small shift in the behavior of
high-value users can provide disproportionate returns to a content
provider that faces downstream congestion. This non-uniform dis-
tribution of user values arises from several causes: (i)many content
providers rely on advertisements, the values of which are often
heavy tailed; (ii) users of social media provide additional value to
content providers by providing content that can attract more view-
ers; such social influence is often heavy-tailed (e.g., as measured by
Twitter and Instagram followers or YouTube subscribers); (iii) even
for content providers that charge a flat monthly rate, the unequal

0 2000 4000 6000
AdWords ID

0.00

0.02

0.04

0.06

0.08

V
a
lu

e

LA

Original
Fitted

0 2000 4000 6000
AdWords ID

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

V
a
lu

e

NY

Original
Fitted

Figure 2: The advertisement values of our collected Google Adwords.
We fit the raw data using Weibull distributions.

0 20 40 60 80 100 120
User ID

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

A
d

ve
rt

is
in

g
 V

a
lu

e

From Top 5 Associated AdWords

Original
Fitted

0 20 40 60 80 100 120
User ID

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

A
d

ve
rt

is
in

g
 V

a
lu

e

From Top 10 Associated AdWords

Original
Fitted

0 20 40 60 80 100 120
User ID

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

A
d

ve
rt

is
in

g
 V

a
lu

e

From Top 20 Associated AdWords

Original
Fitted

0 20 40 60 80 100 120
User ID

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

A
d

ve
rt

is
in

g
 V

a
lu

e

From All Associated AdWords

Original
Fitted

Figure 3: The value distributions of user profiles synthesized based
on the Facebook and Google datasets and quadratic fit.

distribution of viewing frequency means that different users have
different value in terms of revenue per hour.

We collected and analyzed two real-world datasets to quantita-
tively validate the non-uniform distribution of user values. First,
we gathered a collection of Google AdWords by providing Google’s
AdWord suggestion mechanism with all two-letter prefixes (aa, ab,
. . . , zz) and compiling all suggested words, yielding over 6000 Ad-
Words. Next, we chose a set of 14 cities across the United States by
sampling the 2010 US Census list of Metropolitan Statistical Areas
and determined the per-impression cost of each selected AdWord in
each selected city. For each city, we sort the ad terms from highest
value to lowest value and plot the ad term number on the x-axis
against its value per impression on the y-axis. Two representative
results are shown in Figure 2; we present more results in § F. We fit
each city’s data to a Weibull distribution. These figures show that
the value distribution of our collected AdWords is heavy-tailed.

In the 120 Facebook profiles from the ADS dataset [50], each
profile has a list of likes and dislikes, which we manually mapped
into the list of our harvested Google AdWords. For each profile,
we select the top 100 most valuable AdWords to reflect each pro-
file’s potential interest in associated products. We considered four
different advertising schemes: one where each advertisement is
randomly drawn from the top 5, 10, and 20 highest-value AdWord
categories of interest to the profile, and all such categories. For
each advertising scheme, each user has a specific value, which we
fit using three distributions: quadratic, exponential, and Weibull.
Figure 3 shows the top-5 and top-10 strategies with quadratic fit;
other results are in § F.

Our goal in this exploration is not to find a single user value dis-
tribution valid in all applications because user values vary across
providers, applications, economies, and seasons. Rather, we put
together a collection of distributions that represent user value dis-
tributions characterizing our diverse datasets. Thus, even without
knowing the true user value distribution in any particular appli-
cation, our analysis strongly suggests that user values are often
nonuniform. Furthermore, the distributions we choose affect only
our quantitative evaluation results; any service provider implement-
ing FlowTele would have run-time information on user value and
would not need to rely on a third-party user value distribution.

CoNEXT ’22, December 6–9, 2022, Roma, Italy Bo-Rong Chen, Zhuotao Liu, et al.

Watch Done Ad

Leave

Pwa

Pwd Pda

Pwl Pal

Paw
Pdl

Figure 4: The finite state machine for modeling user behavior in
video streaming applications.

Though the datasets we analyzed did not include video streaming
ad values as they are inaccessible to us, limited public disclosures
by content creators (e.g., [61]) demonstrate that ad values are far
from uniformly distributed.

3.2 User Behavior Modeling
Modeling Overview. In order to quantify the impact of band-
width reallocation on provider revenue, we design a user behavior
model for video streaming. FlowTele does not rely on a specific
user behavior model; rather, it can adapt to the pattern of behavior
collected by each content provider. We developed our user behavior
model mainly to evaluate vAlloc, based on previous work [15] that
shows that buffering time is the single most significant factor in
user retention. While that work showed that resolution was rela-
tively unimportant, recent data suggests otherwise; for example,
the YouTube video quality report [21] distinguishes between ISPs
that allow HD-quality video and sub-HD-quality video. As a result,
we design a model that includes both client buffer time and video
quality; this model is based on the Finite State Machine illustrated
in Figure 4. In our model, a user progresses through various states
of the streaming process, labeled Watch (when the user watches
content) and Ad (when the user watches an advertisement). We also
have two transient states:Donewhen the current video has finished
playing and Leave when the user leaves the current session.

Since traffic management can only impact the streaming quality,
in this model, different bandwidth allocations can only affect a
user’s willingness to continue to watch the video and advertisement
(i.e., the transition probabilities 𝑝wl and 𝑝al in the state machine).
Other parameters are either system-related or user-specific, and
cannot be impacted by FlowTele. For instance, at 𝑝dl = 0, the user’s
watching time is entirely driven by video quality metrics, while at
𝑝dl = 1, video quality may increase a user’s watch time but will not
help serve another ad in this session. 𝑝da is the probability that an
advertisement is presented by the provider after a video is finished.
Computing 𝑝wl and 𝑝al. Prior studies [15, 45] examine how buffer
time and playback bitrate (video resolution) affect user engagement.
We use data from these studies to model 𝑝wl and 𝑝al using the
methodology below. In a real deployment, content providers could
build their customized model using the method described in § E.

Wemodel user reaction to buffer times using available-bandwidth
measurements of several residential networks. (1) We took mea-
surements and built a Markov model of the available network
bandwidth to capture realistic bandwidth fluctuations for a cer-
tain ISP-advertised bandwidth (denoted as bwadvertise). (2) For a set
of typical bitrates {BR} [67] and buffer times {BUF} [15], we run a
Markov simulation to determine the buffering experiences during
a video streaming session, as quantified by buffering ratio (fraction

0 5 10 15 20 25 30 35 40
Bandwidth (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

P
w

l

Pwl vs. (buffer, bandwidth) with fixed bitrate

Buffer: 0.1s
0.2s
0.5s
1.0s
2.0s
4.0s
8.0s

0 20 40 60 80 100
Bandwidth (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

P
w

l

Pwl vs. (bitrate, bandwidth) with fixed buffer

Resolution/Bitrate: 360P
480P
720P
1080P
2K
4K

Figure 5: The 𝑝wl during a 260-second video watching session, with
varying (br, buf, bwadvertise).

of time spent buffering) and buffering events (number of distinct
playback stalls). (3) Given the buffering experience, we derive the
watching time 𝑡watch based on [15]. (4) Given a video streaming ses-
sion with length videolength, we formulate the 𝑝wl as the departure
probability of a Poisson process with parameter 𝜆 = 𝑡watch.

We model 𝑝al in the same way as 𝑝wl and summarize the above
procedure in Algorithm 1. Figure 5 shows the computed 𝑝wl for a
260-second video streaming session (the average video length for
top YouTube videos [44]). For clearer presentation, we break the
three dimensions (br, buf, bwadvertise) into two pairs.

3.3 Bandwidth Allocation Algorithm
vAlloc chooses the optimal bandwidth allocation in each control
interval as follows. Let the system state be st𝑡 = ∪𝑖∈S (br𝑡𝑖 , buf

𝑡
𝑖
),

where br𝑡
𝑖
and buf𝑡

𝑖
are the playback bitrate and buffer time for user

𝑢𝑖 . vAlloc aims to choose the next system state st𝑡+1 to maximize
the expected value across all users, subject to available bandwidth.
Expected User Value. To compute the expected value of a user
in state (br𝑡

𝑖
, buf𝑡

𝑖
), we model the streaming system as an infinite

stream of alternating videos and advertisements, and compute the
asymptotic user value based on the transition probabilities (e.g., 𝑝wl
and 𝑝al) determined by the state. Specifically, we set 𝑝1 to the proba-
bility that the user will continue to the next revenue point, and 𝑝2 to
the probability that the user will continue from one revenue point
to the next one. For simplicity of notation, we describe the asymp-
totic user value when videos and advertisements have fixed length
of L𝑣 and L𝑎 , respectively, and the value for all advertisements is
𝑣 (a value decided by the user value); however, our model easily
extends to heterogeneous video length and advertisement values.
The asymptotic user value over the infinite stream is computed as

V𝑢𝑖 =
∞∑︁
𝑘=0

𝑣 · 𝑝1 · 𝑝𝑘2 =
𝑣 · 𝑝1
1 − 𝑝2

,where

𝑝1 (𝑡) =
L𝑣

L𝑣 + L𝑎
· (1 − 𝑝wl)

L−𝑡
𝑡 · (1 − 𝑝dl) · (1 − 𝑝al)

L𝑎
𝑡

+ L𝑎
L𝑣 + L𝑎

· (1 − 𝑝al)
L𝑎−𝑡
𝑡 ; and

𝑝2 = (1 − 𝑝wl)
L𝑣
𝑡 · (1 − 𝑝dl) · (1 − 𝑝al)

L𝑎
𝑡 .

(1)

𝑝1 (𝑡) depends on the current state of the user (whether in watching
a video or advertisement) and the time until the next revenue point;
𝑝2 is constant.

FlowTele: Remotely Shaping Traffic on Internet-Scale Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

Optimal State Transition. Given this user and revenuemodel, vAl-
loc aims to choose an optimal next-system-state st𝑡+1 from st𝑡 . For
each user𝑢𝑖 , the cost of moving from the current state (br𝑡

𝑖
, buf𝑡

𝑖
) to

the next state (br𝑡+1
𝑖
, buf𝑡+1

𝑖
) depends on the relative bitrate br𝑡

𝑖
and

br𝑡+1
𝑖

. Specifically, if br𝑡+1
𝑖
≤ br𝑡

𝑖
, the current buffered content is still

usable, so the bandwidth cost is br𝑡+1
𝑖
·max {0, 𝑡 + buf𝑡+1

𝑖
− buf𝑡

𝑖
},

where 𝑡 is the length of the control interval. Otherwise, we retain
a limited buffer of bufretain at the current bitrate to avoid a rapid
reduction in buffer length that could lead to buffering delay, at a
bandwidth cost of br𝑡+1

𝑖
·max {0, 𝑡 + buf𝑡+1

𝑖
−min {buf𝑡

𝑖
, bufretain}},

Because we choose our bitrate and buffer time in discrete steps,
vAlloc’s problem is an instance of the Multiple-Choice Knapsack
Problem (MCKP) [55], where for each item (user) the choices are
the possible (br, buf) pairs, the value of each choice is the expected
user value of that pair, the cost is the bandwidth cost computed as
described above, and the capacity of the knapsack is the estimate
available bandwidth given by fShaper (see details in § 5). Because
MCKP is NP-hard, we do not always use an exact solution; rather,
we use the FPTAS fully-polynomial approximation to find a solution
that has value at least 99% of the optimal solution. We summarize
the vAlloc allocation in Algorithm 1.
Improving Allocations. The MCKP makes an optimal decision
only for the next interval. Considering future intervals is an in-
stance of the Multi-Dimensional Multiple-Choice Knapsack Prob-
lem (MMKP), since each interval is one dimension in this problem.
Because MMKPs do not have fully-polynomial approximations un-
less P=NP [41], we use single-dimensional MCKP.

3.4 Standalone vAlloc Evaluations
In this section, we present the evaluation of standalone vAlloc.
Comparison with Other Allocation Schemes. We compare
vAlloc with two classes of bandwidth allocation schemes: the status
quo where users’ bandwidth is decided by the transport protocol
and a strawman design where content providers ignore the lowest-
valued users and serve the rest equally. We considered both user-
value distributions derived from real data in § 3.1.

Figure 6 shows the aggregate user values achieved by vAlloc
and other bandwidth management mechanisms. We consider a
user population where new users come over time independent
of the number of existing users. vAlloc achieves over 95% of the
total user value when available bandwidth drops to roughly 50%
of maximum bandwidth, as labeled in Figure 6. The advantage of
vAlloc over other schemes peaks when the available bandwidth is
about 50% of the maximum bandwidth, and vAlloc is even better
as the distribution becomes more heavy-tailed. Finally, our results
show that simply removing low-valued users is not optimal.
Allocation Sensitivity. We evaluate vAlloc using different pa-
rameters for the user behavior model and value distribution. Since
actual parameters vary from provider to provider, we aim to show
that vAlloc’s allocation provides strong improvements across a va-
riety of different parameters. Since bandwidth reallocation impacts
only the three leaving probabilities (i.e., 𝑝wl, 𝑝al and 𝑝dl) in the state
machine, we evaluate vAlloc with different 𝑝wl and 𝑝dl (we choose
𝑝al = 𝑝wl). We set 𝑝wl by linearly scaling the probability distribu-
tions shown in Figure 5. For 𝑝dl, we evaluate several discrete values.
We also considered different parameters for both our user value

Inputs:
Current user set S with value distributions in § 3.1
The state of user 𝑖 in control interval 𝑡 : st𝑖=(br𝑡𝑖 , buf𝑡𝑖)
{BR,BUF}: all possible choices of bitrates/buffer times

Outputs:
The system state for the next control interval st𝑡+1

Func: vAlloc Allocation:
// An instance of Multiple-Choice Knapsack Problem (MCKP)

maximize
{ ∑

𝑖 ExpectedValue(br𝑡+1𝑖 , buf𝑡+1𝑖 ,UserModel)
}

subject to ∀𝑖 (br𝑡+1𝑖 , buf𝑡+1𝑖) ∈ {BR,BUF}∑
𝑖 BandwidthCost(br𝑡𝑖 , buf𝑡𝑖 , br𝑡+1𝑖 , buf𝑡+1𝑖) ≤ B
B : the bandwidth estimate given by fShaper

return st𝑡+1 ← ∪𝑖∈S (br𝑡+1𝑖 , buf𝑡+1𝑖)

Procedure: UserModel
Muser : {𝑝wl | (br, buf, bw,Videolength) }
// Build a Markov Model of available bandwidth via measurements
Mbw ← MarkovModel(bwadvertise,Measurements)
for (br, buf) ∈ {BR,BUF} do

// bw is the advertised value in the meansurements
// The actual bw values in the simulation are drawn fromMbw

BufferingExperience←MarkovSim(br, buf, bw∈Mbw)
// Derive the watch time using the model in [15]
𝑡watch ← ExperienceModel(BufferingExperience)
// Quantify 𝑝wl as the departure probaility of a Poisson Process
𝑝wl ← Poisson(𝑡watch = 𝜆) | Videolength

returnMuser

Func: ExpectedValue(br𝑡+1𝑖 , buf𝑡+1𝑖 ,Muser)
return user value computed by Equation (1)

Func: BandwidthCost(br𝑡𝑖 , buf𝑡𝑖 , br𝑡+1𝑖 , buf𝑡+1𝑖)
if br𝑡+1𝑖 ≤ br𝑡𝑖 then // The current bufferred content is still usable

return br𝑡+1𝑖 · max {0, 𝑡 + buf𝑡+1𝑖 − buf𝑡𝑖 }
else // bufretain : the amount of buffer retained for bitrate br𝑡𝑖

return br𝑡+1𝑖 · max {0, 𝑡+buf𝑡+1𝑖 −min {buf𝑡𝑖 , bufretain}}

Algorithm 1: The vAlloc Allocation Algorithm

0 2 4 6 8
Relative Banwidth

0.8

1.0

1.2

1.4

1.6

T
o

ta
l

V
a
lu

e

(4.5, 1.614)
(9.1, 1.659)

Weibull User Value Distributions

vAlloc
Fairness w/ 10% Removal
Fairness w/ 5% Removal
Fairness

0 2 4 6 8
Relative Banwidth

0.8

1.0

1.2

1.4

1.6

T
o

ta
l

V
a
lu

e

(4.5, 1.597)

(9.1, 1.656)

Quadratic User Value Distributions

vAlloc
Fairness w/ 10% Removal
Fairness w/ 5% Removal
Fairness

Figure 6: The aggregate user value achieved by vAlloc and three other
bandwidth allocation mechanisms.

distributions (quadratic and Weibull). Figure 7 shows our results.
In general, vAlloc performs well across a variety of user models,
providing least benefit when bandwidth allocation cannot affect
user value (i.e., 𝑝dl = 1 or flat user value distributions), and more
benefit when bandwidth allocation has greater impact (i.e., 𝑝dl = 0
or more heavy-tailed user value distributions).
Social Fairness of vAlloc. Finally, we show that vAlloc does not
significantly negate user experience despite bandwidth reallocation.
In this segment, vAlloc is configured to split the total available
bandwidth into two buckets: one bucket for optimizing total user

CoNEXT ’22, December 6–9, 2022, Roma, Italy Bo-Rong Chen, Zhuotao Liu, et al.

0 2 4 6 8 10 12
Relative Banwidth

0.8

1.0

1.2

1.4

1.6

T
o

ta
l
V

a
lu

e

Pwl Distribution Scale Factor = 0.6
0.8
1.0
1.2
1.5

0 2 4 6 8 10
Relative Banwidth

0.8

1.0

1.2

1.4

1.6

T
o

ta
l
V

a
lu

e

Pwl Distribution Scale Factor = 0.6
0.8
1.0
1.2
1.5

(a) Scaled 𝑝wl distributions.

0 2 4 6 8
Relative Bandwidth

0.6

0.8

1.0

1.2

1.4

1.6

T
o

ta
l
V

a
lu

e

Pdl = 0.0
0.25
0.5
0.75
1.0

0 2 4 6 8
Relative Bandwidth

0.8

1.0

1.2

1.4

1.6

T
o

ta
l
V

a
lu

e

Pdl = 0.0
0.25
0.5
0.75
1.0

(b) Different 𝑝dl.

0 2 4 6 8
Relative Bandwidth

0.8

1.0

1.2

1.4

1.6

T
o

ta
l
V

a
lu

e

Quadratic coefficient = 0.01
0.008
0.005
0.002
0 (Flat)

0 2 4 6 8
Relative Bandwidth

0.8

1.0

1.2

1.4

1.6

T
o

ta
l
V

a
lu

e

Weibull Parameter k = 0.6
0.8
1.0
Flat

(c) Different user value distribution parameters.
Figure 7: vAlloc’s performance under different user behavior model
and value distribution parameters. The left-side graphs use quadratic
user value distributions, and the right-side graphs use Weibull user
value distributions.

values and one bucket for optimizing social fairness, as measured by
watching times of different users. Since we cannot directly impact
watching times, we use streaming Quality of Experience (QoE, as
measured by VMAF scores [36, 45]) in our problem formulation,
assuming that better QoEs yield longer watching times.We evaluate
two user repopulation schemes: constant inbound rate (denoted as
F#U), as described earlier, and constant number of users (denoted as
FIR), where every departing user is immediately replacedwith a new
user with value randomly chosen from the user value distribution.
Both user value distributions obtained in § 3.1 are evaluated.

Our results are shown in Figure 8. Even when vAlloc is fully
configured to optimize aggregate user value (the 100-0 Split), the
bottom-quartile users’ watching times drops only slightly (∼10%)
relative to the average watching time. Fairness improves when
vAlloc allocates some bandwidth for QoE fairness. When fully con-
figured to optimize fairness, vAlloc provides watching time fairness
to all users, regardless of their values, as expected.

4 QALLOC DESIGN
Content providers may prefer to optimize metrics other than the
aggregate user value. In this section, we present qAlloc, which
allows content providers to optimize user experiences by optimizing
the fairness of Quality of Experience (QoE) among all users. qAlloc
and vAlloc are not comparable; therefore it is invalid to say “qAlloc is
better than vAlloc” or vice versa. They are two instances of fAllocator
that show that FlowTele can be used to optimize very different metrics.

Video playback QoE is driven by both video quality and rebuffer-
ing events. Because users have varying Internet connection quality
in both ISP-advertised bandwidth (i.e., the best-case bandwidth)
and bandwidth variance, some users need larger client video buffers
to have the same QoE as other users. Furthermore, different videos
have different bandwidth requirements for the same quality level.

100-0 Split 50-50 Split 0-100 Split
0

5

10

15

20

25

30

R
e
la

ti
ve

 W
a
tc

h
in

g
 T

im
e

Quadratic and F#U

Bottom 25% Average Top 25%

100-0 Split 50-50 Split 0-100 Split
0

5

10

15

20

25

30

R
e
la

ti
ve

 W
a
tc

h
in

g
 T

im
e

Weibull and F#U

100-0 Split 50-50 Split 0-100 Split
0

5

10

15

20

25

30

R
e
la

ti
ve

 W
a
tc

h
in

g
 T

im
e

Quadratic and FIR

100-0 Split 50-50 Split 0-100 Split
0

5

10

15

20

25

30

R
e
la

ti
ve

 W
a
tc

h
in

g
 T

im
e

Weibull and FIR

Figure 8: vAlloc imposes small impact on the watching times of low-
valued users despite bandwidth reallocation.

We developed qAlloc to enable FlowTele to evenly distribute the
QoE among users in case of downstream bandwidth constraint.

4.1 Video Streaming and QoE Model
Researchers have proposed various QoE models for streaming ser-
vices [6]; our instantiation of qAlloc focuses on video bitrate, video
type and rebuffering events. Generally, higher bitrate and less re-
buffering events result in a higher quality, and the video type makes
a difference as videos involving more motions, more sudden mo-
tions, and more scene changes need a higher bitrate to achieve a
similar user experience [45]. Our allocator aims to provide fairness
across QoE using a model that averages QoE for a single flow over
next 𝐾 chunks based on the Equation (2), which in turn is based on
Model Predictive Control (MPC) [65], and reasonably characterizes
the impact of bitrate, bandwidth and video type on QoE:
𝑄𝑜𝐸𝐾avg = 1

𝐾

(∑𝐾
𝑘=1 𝑞𝑐 (𝑅𝑘) − 𝜆

∑𝐾−1
𝑘=1 |𝑞𝑐 (𝑅𝑘+1) − 𝑞𝑐 (𝑅𝑘)) | − 𝜇𝑇𝑟

)
, (2)

where 𝑅𝑘 is the bitrate of chunk 𝑘 , 𝑞𝑐 (𝑅) is the per chunk video
quality given bitrate 𝑅, 𝑇𝑟 is the total rebuffering time over the
next 𝐾 chunks, and 𝜆, 𝜇 are the penalty factors related to quality
switching and rebuffering respectively.
Video Quality Metric. To obtain the per-chunk video quality
function, we use the Mean Opinion Score (MOS) [59] as 𝑞𝑐 () in
Equation (2) and choose AVT-VQDB-UHD-1 as our dataset. This
dataset contains 16 Ultra-High-Definition (UHD) videos encoded
with H.264, HEVC and VP9 and varying frame rates based on sev-
eral short movies and provides a corresponding MOS for each
segment [48]. We plot the relationship of MOS with video bitrate
for all the videos of the dataset in Figure 9.

The MOS has two critical parameters: 𝜆, the quality switch
penalty, and 𝜇, the rebuffering penalty. The choices of MPC [65],
Minerva [45], and qAlloc are listed in Table 1. qAlloc is consistent
with Minerva except that 𝜇 is scaled by a factor of 1

25 to account
for the range of MOS values as compared to VMAF values.

4.2 QoE Optimization Problem
The goal of qAlloc is to provide fair QoE by maximizing the lowest
performing user’s average QoE subject to the total bandwidth con-
straint through bitrate adaption. qAlloc operates with three time
intervals: the look-ahead period (over which the QoE is evaluated),
the chunk duration (the boundaries of which allow us to change

FlowTele: Remotely Shaping Traffic on Internet-Scale Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

0 10 20 30 40 50 60
Video bitrate (Mbps)

1

2

3

4

5

M
O

S

V0
V1
V2

V3
V4
V5

V6
V7
V8

V9
V10
V11

V12
V13
V14

V15
V16
V17

V18
V19

Figure 9: MOS versus video bitrate for the videos in the dataset [48].

System 𝜆 𝜇 𝑞𝑐 () & range
MPC [65], Balanced 1 3000

rate ∈ [350, 3000]MPC, Avoid Instability 3 3000
MPC, Avoid Rebuffering 1 6000

Minerva [45] 2.5 25 VMAF ∈ [0, 100]
qAlloc 2.5 1.0 MOS ∈ [1, 5]

Table 1: Comparison of 𝜆, 𝜇 in the QoE modeling in Equation (2).

resolution), and the control interval (frequency at which control
choices are calculated). Because we evaluate the QoE over the en-
tire look-ahead period, when the look-ahead period is less than
the remaining video buffer time, no stalling events occur and the
QoE is entirely dependent on bitrate. We choose a long look-ahead
period so qAlloc will value long buffer times when needed to offset
extended periods of low bandwidth. The chunk duration is chosen
to be a moderate value, on the order of seconds, since chunk down-
loads incur some minor overhead, but smaller chunks allow more
rapid fine-tuning of bandwidth. The control interval is chosen to
be very short (several times per second), allowing qAlloc to rapidly
adjust to changes in the available bandwidth.

Let 𝑇 be the look-ahead period, 𝑇𝑐 be the chunk duration, and
𝑡0 be the current time. Define 𝐾𝑇 as the number of chunks within
[𝑡0, 𝑡0 +𝑇), where the chunk at 𝑡0 is counted while 𝑡0 +𝑇 is not. The
buffer length of flow 𝑖 when downloading chunk 𝑘 is ℓ𝑘,𝑖 , and the
bitrate of the current playing chunk is 𝑅0,𝑖 . Let 𝑅𝑘,𝑖 be the bitrate
of video 𝑖 at chunk 𝑘 , B𝑘,𝑖 be the allocated bandwidth of video 𝑖 at
chunk 𝑘 . The goal is to optimize the minimum QoE among all the
flows by controlling (𝑅𝑘,𝑖 ,B𝑘,𝑖).

However, compared to the typical QoE optimization problem
with video bitrate adaption, our problem is more complicated for
two reasons. First, qAlloc allows choices of not only the video bitrate
but also the bandwidth allocation (impacting the remaining buffer
at the end of the time period), significantly increaseing the number
of choices for each stream. Second, to improve QoE fairness, qAlloc
allocates across multiple flows jointly. A full search of (𝑅𝑘,𝑖 ,B𝑘,𝑖)
would represent an exponential search space. Instead, qAlloc uses
an online algorithm that reevaluates the QoE at each control inter-
val. Although qAllocmakes allocation decisions to optimize QoE for
the entire (long-term) look-ahead period, those decisions are reeval-
uated at each subsequent (short-term) control interval. Hence, some
prior long-term allocations may be overridden by new short-term
decisions. When computing QoE for [𝑡0, 𝑡0 +𝑇) using Equation (2),
we simply assume the target bitrate and bandwidth allocation are
constant across the entire look-ahead period.

The average QoE for flow 𝑖 in the next 𝐾 chunks is 𝑄𝑜𝐸𝐾
𝑖,avg, i.e.,

Equation (2) with 𝑅𝑘 ,𝑇𝑟 replaced by 𝑅𝑘,𝑖 ,𝑇𝑟,𝑖 . The total bandwidth
of the co-bottleneck link is Btotal, and the advertised bandwidth by
user/flow 𝑖’s ISP is Badv,𝑘,𝑖 . Then our optimization problem can be
formulated as:

maximize
{
min𝑖 QoE𝐾𝑇

𝑖,avg

}
subject to

∑
𝑖 B𝑖 ≤ Btotal;

𝑅1,𝑖 = 𝑅2,𝑖 = · · · = 𝑅𝐾𝑇 ,𝑖 ;

𝑇𝑟,𝑖 =
∑𝐾𝑇
𝑘=1

(
𝑅𝑘,𝑖𝑇𝑐

min(Badv,𝑘,𝑖 ,B𝑖) − ℓ𝑘,𝑖
)
+
(𝑡𝑘 − 𝑡𝑘−1),

where (𝑥)+ := max(𝑥, 0), and ℓ𝑘,𝑖 follows the chunk-based buffer
dynamics, i.e., decreases as playing, and gets increased by 𝑇𝑐 only
when a new chunk is fully downloaded.

§ A presents our solver design.

5 FSHAPER DESIGN
The design of FlowTele requires the content provider to shape out-
bound traffic to achieve the per-flow bandwidth allocations speci-
fied by fAllocator while simultaneously remaining friendly to non-
participating cross traffic sharing the same bottleneck links. Though
a source can readily control its outbound bandwidth through UDP
flows, using UDP would require client-side deployment, and main-
taining external TCP-friendliness would require the use of a mech-
anism like Equation-Based Rate Control [18]. A source can likewise
limit its TCP outbound bandwidth by controlling its sending rate,
but the bandwidth it gives up does not get automatically reallo-
cated to co-bottlenecked flows sent from the same source, but rather
shared among remaining co-bottlenecked flows. As a result, the
source also needs to estimate its aggregate TCP fairshare of the
bottleneck-bandwidth so that fAllocator can honor this limit during
bandwidth allocation.

We designed fShaper to meet these requirements and challenges,
and to provide: (i) internal weighted fairness: the component flows
of a fShaper source should have throughputs that converge to the
target weights given by fAllocator, while having (ii) external friend-
liness: the component flows in aggregate neither undershoot nor
overshoot the throughput of uncontrolled flows when competing
with other cross traffic on a bottleneck link; i.e., the flows controlled
by fShaper in aggregate are friendly to external TCP cross traffic.

5.1 Design Detail
At its core, fShaper first estimates the source’s total TCP fairshare
of the bottleneck-bandwidth, and then allocates the total fairshare
among the component flows (based on fAllocator’s allocation deci-
sions) by directly overwriting each flow’s congestion window and
leaving it fixed for each allocation interval. To this end, a fShaper
source divides its component flows into three categories: recipient,
donor and calibrator. Recipient flows have target weights (given by
fAllocator) greater than their TCP fairshare and donor flows have
target weights less than their TCP fairshare. Calibrator flows are
passive observers for which fShaper does not update the conges-
tion windows, i.e., they follow a TCP congestion control algorithm
(CCA). Calibrator flows statistically represent the source’s per-flow
TCP-friendly rate. Calibrator flows must be network-limited, and
in a network-limited application, such flows should exist. By mea-
suring the sending rates of calibrator flows, fShaper obtains an
accurate measurement of the source’s fairshare of the bottleneck.
Fairshare Estimation. We estimate the source’s fairshare as
Bfairshare = Ntotal

Ncalibrator
· Bcalibrator, where B(·) andN(·) are the total

throughput and the number of flows, respectively. We estimate cal-
ibrator flow throughput as T𝑖 = F·MSS

RTT , where F is the number of

CoNEXT ’22, December 6–9, 2022, Roma, Italy Bo-Rong Chen, Zhuotao Liu, et al.

Content Provider
Location

User
Location

Cross-Traffic
Sender Location

Provider-User /
CrossTraffic-User

RTT (ms)

Bottleneck
Capacity (Gbps)

GCP Tokyo Taiwan GCP Taiwan ∼40 / ∼7 up to 1
GCP Los Angeles Illinois GCP Montréal ∼55 / ∼31 up to 1

Table 2: The settings of standalone fShaper evaluations.

packets in flight,MSS is the segment size, and RTT is the round-trip
time. Though flow throughput can be estimated from loss rate [43],
we use values readily available in the Linux TCP implementation.
Congestion Window Updates. The bandwidth available for con-
trolled flows is Bavailable = Bfairshare−Bcalibrator =

(
Ntotal
Ncalibrator

− 1
)
·

Bcalibrator. We distributeBavailable among recipient and donor flows
according to T𝑗 =

weight𝑗∑
𝑖 weight𝑖

· Bavailable, where weight𝑗 is the
𝑗-th flow share computed by fAllocator. To achieve the target
throughput T𝑗 , fShaper directly updates cwnd for flow 𝑗 , setting
cwnd𝑗 =

T𝑗 ·RTT𝑗
MSS .

The cwnd of controlled (recipient and donor) flows andBavailable
are updated every𝑇 seconds, and we average the values of packets-
in-flight and RTT, sampling every 𝑡 seconds to smooth the effects of
time synchronization across different TCP flows. Based on extensive
experiments, for our evaluation environment, we set𝑇 to 0.1 second
and 𝑡 to 10 milliseconds. We supplement additional details in § B.1.
Controlled Flow Behavior. Because controlled flows’ cwnd is
directly set by fShaper, they do not react to congestion signals
such as loss and latency. Instead, cwnd is set by dividing a target
bandwidth by that flow’s RTT, thus limiting the impact of RTT
differences between calibrator and controlled flows. Controlled
flows are selected only after they complete slow start; thereafter,
neither slow start nor congestion avoidance operate on controlled
flows. On timeout, the leading packet is retransmitted. On single
packet loss, fast retransmit retransmits the lost packet, but cwnd is
unaffected. Finally, changes to cwnd are accompanied by changes to
pacing rate, so the network load created by the controlled flows in
aggregate are relatively stable over time. Though controlled flows
do not respond to normal CCA signals, they use congestion signals
measured by calibrator flows to control their usage of the bottle-
neck link, which show slightly less-than-fair-share usage in our
evaluations (§ 5.2 and § 6.1). fShaper is designed for environments
where losses and other CCA signals are almost entirely caused by
a single co-bottleneck segment, in which case these signals should
be substantially similar for all flows.
Why Use Calibrator Flows? (i) It provides a simple way to make
flows friendly to any given TCP variant. For instance, BBRv2 [8]
uses a rich model which makes estimating the expected through-
put complicated; using calibrator flows can avoid replicating such
complexity while still providing external friendliness, as shown
by our evaluation results in § C.2. (ii) It allows controlled flows
to reach their target weights instantly. Other methods, such as
MulTCP [12] or a variant used in Minerva [45] (denoted MulCu-
bic), adjusts cwnd by changing the multiplicative-decreasing factor
in TCP, need several RTTs to converge to the target weights. By
contrast, fShaper directly adjusts cwnd in a centralized manner
and relies on calibrator flows to achieve external friendliness. We
prefer fast convergence since fAllocator outputs new target weights
frequently, as we demonstrated by evaluation in § 6.1. In this paper,
we select calibrator flows at random.

0 100 200 300 400 500 600 700 800
Goodput (Mbps)

9:1
(90:10)

3:1
(75:25)

4:1
(80:20)

Cubic
 Original

Cross Traffic

Calibrator Flow Recepient Flow

Donor Flows

(a) Controlling majority of bottleneck bandwidth.

0 100 200 300 400 500 600 700 800
Goodput (Mbps)

9:1
(90:10)

3:1
(75:25)

4:1
(80:20)

Cubic
 Original

Cross Traffic

Calibrator Flow Recepient Flow

Donor Flows

(b) Controlling minority of bottleneck bandwidth.

Figure 10: fShaper results using the US network setting of Table 2.
The y-axis plots target allocations and achieved allocations (in paren-
theses) for the aggregate recipient flow and aggregate donor flow.

5.2 Standalone fShaper Evaluations
We evaluate the standalone fShaper using the network settings
shown in Table 2. All flows are co-bottlenecked at the last link. We
evaluate fShaper’s ability to achieve three different ratios of control.
For each set of ratios, we used 200 and 100 FlowTele flows for two
scenarios, of which 25% are randomly selected as calibrator flows.
We chose 25% for balancing the throughput variance introducing by
the scaling and the proportion of controlling flows that can benefit
from fAllocator. We configure recipient and donor flows in each
case as: (i) the 9:1 case: a single recipient flow with a target share
10%, (ii) the 3:1 case: three recipient flows with target shares [40%,
30%, 30%], and (iii) the 4:1 case: 5% recipient flows with total target
share 20% equally distributed among them. All donor flows are
equal in each case. Cross traffic consists of multiple Cubic flows.

For each set of ratios, we considered two cases: one in which
fShaper flows comprise over half of the bottleneck capacity, referred
to as majority scenario, and one minority scenario. We plot the
experimental results in Figure 10.

The results demonstrate that fShaper achieves accurate internal
weighted fairness among FlowTele flows in all controlled cases,
while maintaining the same level of external friendliness as TCP
Cubic flows. Specifically, the total goodputs of FlowTele flows in
all cases are very close to the Control Group where all flows are
running TCP Cubic, indicating FlowTele flows in aggregate are
TCP-friendly to external cross-traffic. Within the FlowTele flows,
the allocation for recipient flows (in aggregate) and donor flows (in
aggregate) are close to the target allocation in all cases. The donor
flows in all cases achieve almost equal goodputs (with very small
standard deviation among them). The recipient flows in all cases
also achieve the desired weighted fair shares.

We further evaluated standalone fShaper in other network set-
tings. All our experiments (presented in § C.2) show that fShaper
can achieve desirable weighted fair shares.

FlowTele: Remotely Shaping Traffic on Internet-Scale Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

No. Content
Location

User
Location RTT (ms) Bottleneck

Capacity (Gbps)
Bottleneck

Type
Cross
Traffic

1 Lab Lab ∼10–40 emulated by tc Known N/A

2 Chicago
InstaGENI Illinois ∼12 up to 1 Dynamic Real Users

3 Vermont
InstaGENI

Texas
InstaGENI ∼40 up to 0.5 Dynamic Self

Generated

4 GCP Ohio Illinois ∼15 up to 1
(ISP advertise) Known Self

Generated

5 Digital Ocean
New York Toronto ∼13 emulated by tc Known FCC

Traces

6 GCP Ohio Illinois ∼20 up to 1 Known Self
Generated

Table 3: The network settings used in integration evaluation.

6 EVALUATION
We implement a prototype1 of FlowTele in roughly 9900 lines of
code (mostly in Python and C++). This section evaluates FlowTele,
as an integrated system, over the current regime of TCP fairshare
for optimizing content provider defined metrics. We also study a
co-bottleneck detection mechanism that can be used in FlowTele,
as well as the system overhead.

6.1 Integration Evaluation
To thoroughly evaluate FlowTele, we consider a wide range of
settings with different locations of content providers and users,
different RTTs, different bottleneck capacities, whether the bottle-
neck is dynamic or known a priori, and different cross traffic. We
summarize the settings in Table 3.

For the user-model state machine (Figure 4) parameters that are
system-related and not impacted by FlowTele, we set 𝑝wd = 1 only
when a video is finished and 0 elsewhere, 𝑝wa = 1−𝑝wl−𝑝wd, 𝑝da =
1 (i.e., a new ad is added whenever the previous video finishes), and
𝑝aw = 1 − 𝑝al; 𝑝dl is user-specific and we set it as 0.25 by default.
We set 𝑝wl = 𝑝al and compute them dynamically using our model
described in § 3.2. We further study different 𝑝dl, 𝑝wl, 𝑝al in § 3.4.
The control interval of vAlloc is 1 second, and fShaper updates cwnd
every 0.1 second. We randomly selected 25% of FlowTele flows as
calibrator flows (§ C.2 describes the choice of calibrator flow ratio).
We assume videos are encoded at Constant Bit Rate using bitrates
recommended by YouTube [66]. We send synthetic video chunks; a
practical implementation would send chunks selected by vAlloc.
Controlled Environments. We start the evaluation in our lab
where we control the entire network path from the content provider
to the users (Table 3 setting 1). We impose a first-hop link capacity
of 200Mbps–1Gbps using droptail buffers using the tc command.
We ran 100 FlowTele flows. Throughout this section, we sample
user/flow values from a Weibull distribution modeled after the
top-10 AdWords value as described in § 3.1. We started all flows
together with the same set of user values. The results are shown
in Figure 11(a). As the bottleneck capacity increases, the aggregate
value achieved by FlowTele also increases, reaching a median of
31% gain given a 1Gbps bottleneck. This is because FlowTele has
larger optimization space with higher capacity.

In Figure 11(b), we fix the link capacity (500Mbps) and vary the
number of flows. FlowTele achieves the highest gain (over 35%)
when the number of flows is neither too small (uncongested, little
need for optimization) nor too large (over-congested, little space
for optimization).

1Source code available at: https://github.com/flowtele/FlowTele

200 300 400 500 600 700 800 900 1000
Total Bandwidth (Mbps)

1.0

1.1

1.2

1.3

1.4

T
o

ta
l
U

se
r

V
a
lu

e

 (
N

o
rm

.
to

 B
e
n

ch
m

a
rk

)

2

4

6

8

A
vg

.
G

o
o

d
p

u
t

p
e
r

U
se

r
(M

b
p

s)

User Value Avg. Goodput

(a) With varying bottleneck bandwidths.

20 40 60 80 100 120 140 150
Total Users

1.1

1.2

1.3

1.4

T
o

ta
l
U

se
r

V
a
lu

e

 (
N

o
rm

.
to

 B
e
n

ch
m

a
rk

)

5

10

15

20

A
vg

.
G

o
o

d
p

u
t

p
e
r

U
se

r
(M

b
p

s)User Value Avg. Goodput

(b) With varying number of flows.

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Time (s)

0.5

1.0

1.5

2.0

E
a
ch

 U
se

r
V

a
lu

e

 (
N

o
rm

.
to

 B
e
n

ch
m

a
rk

)

10

15

20

25

30

35

A
vg

.
G

o
o

d
p

u
t

p
e
r

U
se

r
(M

b
p

s)

User Value Avg. Goodput

(c) With flows joining and leaving dynamically.
Figure 11: Aggregate user value gain achieved by FlowTele in the
controlled environments.

New Reno
Vegas

BBRv2 Cubic

New Reno

Vegas

BBRv2

Cubic

1.28 1.31 1.29 1.28

1.26 1.18 1.09 1.27

1.30 1.32 1.13 1.24

1.28 1.33 1.30 1.30

Cross Traffic

C
a
li
b

ra
to

r

New Reno
Vegas

BBRv2 Cubic

New Reno

Vegas

BBRv2

Cubic

0.51
(.002)

0.40
(.013)

0.44
(.013)

0.50
(.004)

0.59
(.006)

0.51
(.006)

0.69
(.010)

0.56
(.013)

0.48
(.024)

0.24
(.017)

0.53
(.078)

0.50
(.008)

0.52
(.003)

0.46
(.013)

0.45
(.014)

0.51
(.004)

Mean
(s.t.d.)

Cross Traffic

1.10

1.15

1.20

1.25

1.30

M
e
d

ia
n

 T
o

ta
l U

se
r V

a
lu

e

 (N
o

rm
. to

 B
e
n

ch
m

a
rk

) 0.30

0.40

0.50

0.60

Frie
n

d
lin

e
ss (x

T
ra

ffic/
to

ta
l)

(a) With varying TCP congestion control algorithms.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Equal RTT

10-25ms

10-40ms

1.28 1.29 1.30 1.30 1.29 1.29 1.30 1.29 1.30 1.28 1.30 1.29 1.30 1.29 1.29

1.27 1.28 1.23 1.24 1.26 1.23 1.24 1.24 1.26 1.23 1.24 1.25 1.25 1.23 1.23

1.23 1.24 1.19 1.22 1.25 1.19 1.19 1.21 1.23 1.19 1.20 1.24 1.22 1.19 1.18

Run ID

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Equal RTT

10-25ms

10-40ms

0.51 0.50 0.51 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.51 0.50

0.48 0.48 0.53 0.50 0.48 0.54 0.53 0.51 0.50 0.53 0.52 0.49 0.49 0.53 0.53

0.47 0.46 0.55 0.49 0.46 0.54 0.54 0.50 0.48 0.54 0.52 0.48 0.49 0.54 0.55

Run ID

1.20

1.25

1.30 M
e
d

ia
n

 T
o

ta
l

 U
se

r V
a
lu

e

 (N
o

rm
. to

 B
e
n

ch
m

a
rk

)

0.48

0.50

0.53

0.55 Frie
n

d
lin

e
ss

(x
T
ra

ffic/
to

ta
l)

(b) With varying RTTs.
Figure 12: Performance gain and friendliness of FlowTele when
interoperating with different CCAs and RTTs. “Friendliness” is the
fraction of bandwidth used by cross-traffic.

In Figure 11(c), we consider users that join and leave dynami-
cally. In particular, 5 new flows join every 5 seconds until all 100
FlowTele-flows have joined. Each flow exits after 60 seconds. The
link capacity is 1Gbps. Overall, the performance gain of FlowTele
increases as more flows join. The gain peaks at time 105s with
roughly 60 flows. The improvement then drops as the network
becomes less congested.

Figure 12 explores how FlowTele interoperates with varying TCP
CCAs and RTTs. Figure 12(a) shows results from different CCAs.
(“xTraffic” represents cross traffic). We ran 80 FlowTele flows and
80 cross traffic flows with New Reno, Vegas, BBRv2, and Cubic.

CoNEXT ’22, December 6–9, 2022, Roma, Italy Bo-Rong Chen, Zhuotao Liu, et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Run Number

0.8

1.0

1.2

1.4

1.6

T
o

ta
l

U
se

r
V

a
lu

e

 (
N

o
rm

.
to

 B
e
n

ch
m

a
rk

)

780

790

800

810

820

830

840

850

T
o

ta
l

M
e
a
su

re
d

 G
o

o
d

p
u

t
(M

b
p

s)

User Value Total Goodput

(a) With user-generated cross traffic.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Run Number

0.9

1.0

1.1

1.2

1.3

1.4

1.5

T
o

ta
l
U

se
r

V
a
lu

e

 (
N

o
rm

.
to

 B
e
n

ch
m

a
rk

)

222

224

226

228

230

232

234

236

T
o

ta
l
M

e
a
su

re
d

 G
o

o
d

p
u

t
(M

b
p

s)

User Value Total Goodput

(b) With dynamic bottleneck capacities.
Figure 13: Aggregate user value gain achieved by FlowTele over GENI.

FlowTele’s median gain is 30% when using Cubic as calibrator flows.
When FlowTele flows and cross traffic use the same CCA, FlowTele
uses 47–50% of the total bandwidth. Vegas and BBRv2 reflect lower
median gains because they use delay as a congestion signal, reduc-
ing performance when competing against controlled flows.

In Figure 12(b), we consider flows with diverse RTTs. We divided
the flows into 4 groups, and assign them RTTs from two sets: (10 ms,
15 ms, 20 ms, 25 ms) and (10 ms, 20 ms, 30 ms, 40 ms). We ran
80 FlowTele flows and 80 Cubic flows with 25% of them using
each RTT. Increased RTT variance reduces FlowTele’s performance
gain, but the median gain is still 20%. Friendliness depends on
the extent to which selected calibrator flows can represent the
aggregate FlowTele flows.
Over GENI [5]. We evaluate FlowTele on the GENI testbed [5].
First, as shown in Table 3 setting 2, we construct a path from
Chicago InstaGENI to our machines in Illinois with up to 1Gbps
capacity. We send 50 FlowTele flows and 50 Cubic flows across the
path. We also add real user-generated cross traffic by redirecting
2 volunteers’ Internet traffic through the Chicago InstaGENI us-
ing a proxy server. During the experiments, volunteers engaged in
various activities, including file downloads, web searching, video
streaming, and video conferencing, providing a total load of 50–
100Mbps. We ran 15 runs and plot the result in Figure 13(a). The
results suggest that even with very dynamic cross traffic (as shown
by the varying total measured goodput), FlowTele still achieves
significant performance gains, with median gains from 20–30%.

Further, we build a setting (the 3rd one in Table 3) fromUniversity
of Vermont InstaGENI to University of Texas InstaGENI. Both the
bottleneck and total capacity are dynamic and unknown a priori.
Since we typically get only a few hundred Mbps using our GENI
settings (default WAN and non-guaranteed peering links), we use
20 FlowTele flows and 20 TCP Cubic flows as cross traffic in this
experiment. The results are shown in Figure 13(b). FlowTele again
shows at least 20% gain in all 15 runs.
From Cloud to ISPs. We also created three settings (no. 4, 5,
and 6 in Table 3) to evaluate FlowTele when the content providers
are hosted by cloud VMs, and their traffic traverses ISP networks.
First, we test FlowTele over a real ISP residential link with 1Gbps
advertised downstream bandwidth (Table 3 setting 4). Since the
cloud VMs onGCP have over 2Gbps capacity, the bottleneck is likely

15 17 19 21 23 1 3 5 7 9 11 13
Time of the Day (hr)

1.0

1.1

1.2

1.3

T
o

ta
l
U

se
r

V
a
lu

e

 (
N

o
rm

.
to

 B
e
n

ch
m

a
rk

)

550

600

650

700

750

800

850

900

T
o

ta
l
M

e
a
su

re
d

 G
o

o
d

p
u

t
(M

b
p

s)

User Value Total Goodput

(a) Residential ISP networks.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Run Number

1.15

1.20

1.25

1.30

1.35

1.40

T
o

ta
l

U
se

r
V

a
lu

e

 (
N

o
rm

.
to

 B
e
n

ch
m

a
rk

)

(b) ISP networks simulated via FCC traces.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Run Number

1.10

1.15

1.20

1.25

1.30

T
o

ta
l

U
se

r
V

a
lu

e

 (
N

o
rm

.
to

 B
e
n

ch
m

a
rk

)

0.40

0.43

0.45

0.48

0.50

0.53

0.55

0.58

0.60

Fr
ie

n
d

li
n

e
ss

 (
x
T
ra

ff
ic

/
to

ta
l)

fShaper MulCubic Friendliness

(c) fShaper vs. MulCubic [45].
Figure 14: Aggregate user value gain achieved by FlowTele from
Cloud to ISP networks.

located in the ISP (likely the last-mile). We use 100 FlowTele flows
and 100 TCP Cubic flows of cross traffic. We ran the experiments
every 2 hours for a day. The results are shown in Figure 14(a). On
average, FlowTele achieves ∼20% value gain throughout the day
with dynamic background traffic.

In the second case of this setting (no. 5 in Table 3), we con-
struct an ISP network using the realistic trace extracted from FCC
Datasets [10]. In particular, following [65], we concatenate reports
from each server-and-client pair to form 60 second blocks and group
by ISP and geographical area. In total, we find 6 ISP networks as
well as their served flows (details deferred to Table 4). In this part,
we consider an ISP network with roughly 2Gbps capacity (serving
510 flows/users, where each user receives an advertised 16Mbps).
We thus start 200 FlowTele-flows from the content providers on
Digital Ocean (Table 3 setting 5) and replay the bottleneck capacity
based on the bandwidth traces using the tc command. The results
are shown in Figure 14(b).

In the final setting (no. 6 in Table 3), we compare FlowTele with
an approach that uses MulCubic [45] to enforce the bandwidth
allocations given by vAlloc. This demonstrates the fast convergence
of fShaper. Given roughly 1Gbps bottleneck, we place 100 FlowTele
flows and 100 TCP Cubic flows as cross-traffic. The results are
shown in Figure 14(c). Overall, FlowTele achieves over 25% perfor-
mance gain, which doubles the gain (roughly 12%) using MulCubic.
TCP Friendliness. For all settings in Table 3 with TCP Cubic cross-
traffic, we report the bandwidth ratio of the aggregate FlowTele-
controlled flows and cross flows in Table 5. FlowTele neither over-
shoots nor undershoots its fair bandwidth share.

FlowTele: Remotely Shaping Traffic on Internet-Scale Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

ISP No. Number of
Flows

Total
Bandwidth

Advertised
Bandwidth

Average
Bandwidth

A 10 25 Mbps 16 Mbps 2.5 Mbps
B 104 430 Mbps 8 Mbps 4.13 Mbps
C 288 930 Mbps 16 Mbps 3.23 Mbps
D 510 1976 Mbps 16 Mbps 3.87 Mbps
E 13 170 Mbps 14 Mbps 13.1 Mbps
F 34 590 Mbps 14 Mbps 17.35 Mbps

Table 4: Collected FCC flow traces [10].

Setting No.
in Table 3

Number of Flows
FlowTele / Cubic

Bandwidth Ratio
Mean s.t.d.

2 50 / 50 0.5527 0.0096
3 20 / 20 0.5123 0.0042
4 100 / 100 0.5001 0.0032
6 100 / 100 0.5137 0.0075

Table 5: FlowTele is TCP friendly to cross traffic.

10 30 50 70 90
Fraction of Users Throttled (%)

1.1

1.2

1.3

1.4

T
o

ta
l
U

se
r

V
a
lu

e

 (
N

o
rm

.
to

 C
o

m
m

o
n

 P
ra

ct
ic

e
)

5.6

5.7

5.8

5.9

6.0

A
vg

.
G

o
o

d
p

u
t

p
e
r

U
se

r
(M

b
p

s)

User Value Avg. Goodput

20 40 60 80 100 120 140 150
Total Users (Bottom 30% Throttled)

1.1

1.2

1.3

1.4

T
o

ta
l

U
se

r
V

a
lu

e

 (
N

o
rm

.
to

 C
o

m
m

o
n

 P
ra

ct
ic

e
)

5

10

15

20

A
vg

.
G

o
o

d
p

u
t

p
e
r

U
se

r
(M

b
p

s)User Value
Avg. Goodput

(a) With varying fractions of users being throttled. (b) With varying number of flows.
Figure 15: Aggregate user value gain achieved by FlowTele compared
with common practices [20, 60].

…TTL 1
Flow A

TTL 2
Flow A

TTL 2
Flow B

TTL 30
Flow A

TTL 30
Flow B

TTL 1
Flow B Load Packets TTL 30

Flow A
TTL 30
Flow B

… TTL 1
Flow A

TTL 1
Flow B

Figure 16: Measurement packet train for co-bottleneck detection,
based on Pathneck [28].

6.2 Comparison with Current Practices
During the COVID-19 pandemic, some large-scale content providers
(such as YouTube and Netflix) proactively throttle video quality [20,
60] to 480p to reduce the bandwidth pressure on downstream In-
ternet links. We compare FlowTele with such practices using the
first setting in Table 3. First, we evaluate different fractions of
lower-valued users throttled to 480p. We set up 80 FlowTele flows,
competing with 80 TCP Cubic flows of cross traffic, over the bottle-
neck link with 1Gbps capacity. The results are shown in Figure 15(a).
FlowTele achieves roughly 25% aggregate value gain compared with
this common practice. When 90% users are throttled, FlowTele’s
performance gain is smaller (15%) because the amount of bandwidth
saved by throttling most users allows the remaining (high-value)
users to all have very high video qualities (e.g., 2K), leaving fewer
potential optimizations for FlowTele.

We also vary the number of flows while fixing the percentage of
throttled users at 30%. The results are shown in Figure 15(b). The
overall performance gains are similar to Figure 11(b), showing that
FlowTele outperforms static value-based throttling across a wide
range of per-flow bandwidths.

6.3 Co-Bottleneck Detection
FlowTele is designed to work with any system for detecting co-
bottlenecked flows. We demonstrate one design by extending Path-
neck [28] to perform co-bottleneck detection between pairs of flows.
For a single flow, Pathneck sends a packet train that contains mea-
surement packets, load packets, and more measurement packets.
The idea of Pathneck is that the load packets will buffer more at

No. Type
Users on GENI

(# of Nodes in a Site,
Total BW, Site Name)

Content
Provider BW

(Mbps)
Precision Recall

1 One downstream
Bottleneck (2, 100 , NW); (2, 200, UW) 500 1.00 0.95

2 Two downstream
Bottlenecks

(2, 100, NW); (1, 100, UW);
(2, 100, MI) 500 0.81 0.75

3 Content Provider
Bottleneck (2, 100, NW); (2, 200, UW) 250 1.00 0.99

4 Content Provider
Bottleneck

(2, 100, NW); (1, 100, UW);
(2, 100, MI) 250 1.00 1.00

5 No co-bottleneck (1, 100, NW); (1, 100, UW) 250 0.95 0.99

6 No co-bottleneck (1, 100, NW); (1, 100, UW);
(1, 100, MI) 500 0.95 1.00

Table 6: The network settings used in co-bottleneck detection. NW,
UW, MI stand for Northwestern, Wisconsin, Michigan InstaGENI,
respectively.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160
Time (s)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

E
a
ch

 U
se

r
V

a
lu

e

 (
N

o
rm

.
to

 B
e
n

ch
m

a
rk

)

NW 1, 5 flows
Detect NW 2 & UW,
 20 flows

Detect MI 1,
 25 flows

Detect MI 2,
 30 flows 50

100

150

200

250

300

T
o

ta
l
M

e
a
su

re
d

 G
o

o
d

p
u

t
(M

b
p

s)

User Value Total Goodput

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Run Number

0.8

1.0

1.2

1.4

T
o

ta
l
U

se
r

V
a
lu

e

 (
N

o
rm

.
to

 B
e
n

ch
m

a
rk

)

above 300Mbps (5 cobottlenecked flows)
200-300Mbps (20 cobottlenecked flows)

150-200Mbps (25 cobottlenecked flows)
below 150Mbps (30 cobottlenecked flows)

Figure 17: Per-user and aggregate-user value with dynamic co-
bottlenecked flows detected by Pathneck-MF.

the bottleneck than at other points in the path. By measuring the
time at which measurement packets induce ICMP Time Exceeded
replies, Pathneck localizes the bottleneck. We create Pathneck-MF
by extending Pathneck so it sends multiple sets of measurement
packets (both at the beginning and the end of the packet train).
For example, for two flows A and B, we create a packet train by
interleaving measurement packets for A and B, then sending load
packets (which could be packets for A or B), and finally interleaving
measurement packets for A and B, as shown in Figure 16. When
Pathneck detects the same bottleneck for flow A and flow B, we
call these two flows co-bottlenecked.
Detection Accuracy. We construct a controlled environment to
verify Pathneck-MF. To gain ground-truth on bottleneck location,
we use a content provider located in the Midwest and control the
next-hop capacity using tc, and send measurement packet trains to
multiple nodes on three GENI sites (NW, UW, and MI). We explored
all source-destination pairs using iperf and found that at NW and
MI, the two same-site nodes share a bottleneck link of 100Mbps.
Each node at UW has a dedicated 100Mbps link. We consider three
cases (summarized in Table 6): (i) co-bottlenecked on the down-
stream path (#1, 2), (ii) co-bottlenecked at the content provider (#3,
4), and (iii) no co-bottleneck links (#5, 6). We send 20 probes for
each scenario, compare the results with ground truth, and present
results in Table 6. Overall, Pathneck-MF demonstrates satisfactory
precision and recall.
Dynamic Bottlenecks. We construct a multiple-bottleneck en-
vironment (the 2nd setting in Table 6), and run 10 FlowTele flows

CoNEXT ’22, December 6–9, 2022, Roma, Italy Bo-Rong Chen, Zhuotao Liu, et al.

CPU Usage 10 flows 20 flows 50 flows 100 flows 200 flows
fShaper 0.014% 0.032% 0.031% 0.155% 0.168%
vAlloc 0.640% 0.702% 0.732% 0.579% 0.481%
qAlloc 0.635% 0.673% 0.695% 0.659% 0.639%

Pathneck-MF 0.233%
Table 7: CPU overhead of FlowTele on EPYC 7B12.

at each GENI site, 30 flows in total. Both NW and MI sites have
two nodes, and we split flows equally between them. The content
provider initially has 500Mbps upstream capacity. We dynamically
change the capacity to create moving bottlenecks. In particular,
initially, only the 5 flows sent to the same node at NW are co-
bottlenecked at their last hop. As we reduce the upstream capacity,
the bottleneck linksmove up. As a result, Pathneck-MF detects more
co-bottlenecked flows. Eventually, all 30 flows are co-bottlenecked
at the content provider’s outbound link. We plot these dynamics
in Figure 17: the top half is the real-time user values in specific
one and the bottom half is the aggregated user values in 15 runs. It
is clear that FlowTele achieves consistent gains (20% on average)
given dynamic co-bottlenecked flows.
CPUOverhead. Tomeasure CPU overhead, we use a GCPVMwith
64-core, 128-thread AMD EPYC 7B12 CPUs to run FlowTele. Our
VM had 4 threads and 4GB memory and sent traffic to our clients
located in Illinois. We used sar to measure the difference between
CPU utilizations after adding Pathneck-MF, fShaper, vAlloc, and
qAlloc. Table 7 shows that vAlloc and qAlloc took about 0.63% of
the CPU, whereas the overhead of fShaper depends on the number
of flows, using 0.0025%–0.005% of the CPU per flow.

7 ETHICAL CONSIDERATIONS
Ethical Network Testing. Before releasing our traffic on the
broad Internet, we ran several experiments on internal networks
that demonstrated the friendliness of our traffic across a range of
bandwidths and ratios of controlled traffic to cross-traffic. We also
initially constrained our traffic to limited rates while we gained
confidence in the friendliness of fShaper in real environments.
When we used real cross traffic that we could observe in § 6.1, we
did not gather any sensitive information about that cross traffic,
including destination information, packet sizes, or packet patterns,
and the cross-traffic was the normal traffic initiated by two of this
paper’s co-authors, both of whom designed the experiment and
understood the setup and risks.
Ethics of Bandwidth Reallocation. While many network man-
agement tools can be used for unethical purposes, we believe that
the examples illustrated here are, in many practical cases, ethi-
cal uses of bandwidth reallocation. We explore how FlowTele ap-
proaches this balancing in light of four ethical principles [62].
FlowTele does not address the principles of autonomy and benefi-
cence, as those relate to the operation of the content provider (e.g.,
user interface, information collection, and content selection) rather
than the bandwidths selected for their delivery. FlowTele conforms
with the principle of nonmaleficence by taking a fair share as com-
pared to competing flows, while the allocators aim to promote some
form of the principle of justice. Several forms of the principle of
justice have been stated [62], such as “to each person an equal
share” (as TCP attempts to provide), “to each person according to
need” (a form of which qAlloc attempts to provide), and “to each

person according to contribution” (a form of which vAlloc attempts
to provide). The relative merits of each principle of justice is a
philosophical question beyond the scope of this paper.

8 RELATEDWORK
Traffic Shaping on Remote Bottlenecks. In general, network
traffic shaping is done locally; for instance, ISPs shape their traffic to
reduce peak utilization [42]. When network flows are bottlenecked
on remote links, flow senders have limited shaping capabilities.
Although it is possible for senders to enforce various queuing or
throttling mechanism in private WAN [26, 30, 33] or datacenter
networks [3, 23, 38], fine-grained shaping in open and decentralized
networks is still challenging. Prior work [37, 39, 40] proposed the
concept of destination-driven policies which allows senders to real-
locate bandwidth across flows at Cloud/ISP middleboxes (aiming
at defending against DDoS attacks). FlowTele, however, does not
require intermediate deployment.
Transport Variant. Several transport protocols have recently
been proposed, such as BBR [7] BBRv2 [8], PCC [16], QUIC [35],
DCTCP [4] in data center networks, and Coupled Congestion Con-
trol [14, 47, 68] in multi-path networks. As discussed in § 5, fShaper
is not another TCP variant. Instead, it is cross-flow bandwidth
reallocator compatible with the underlying transport protocol.
Video Quality of Experience. Many studies aim to improve the
QoE, including [2, 15, 29, 45, 56, 57, 65, 68]. For instance, a recent
art Minerva [45], designed based on MPC [65], optimizes flow rates
for QoE fairness among video streams. FlowTele can be instantiated
with qAlloc (detailed in § 4) to optimize QoE fairness as well. We
implementMinerva on our emulation platform, as described in §D.1,
and FlowTele outperforms Minerva.

9 CONCLUSION
In this paper, we present FlowTele, the first system onwhich content
providers can build to remotely shape traffic on Internet-scale net-
works in accordance with certain prioritization metrics chosen by
the providers. FlowTele is designed with multiple components. First,
we developed fAllocator, the brain that optimizes content-provider
selected metrics by computing cross-flow bandwidth allocations.
We demonstrate two fAllocator optimizers: vAlloc to maximize ag-
gregate user value and qAlloc to minimize user QoE unfairness.
Next, we design fShaper, which takes bandwidth allocations from
fAllocator and enforces the target bandwidth share among flows.
We implemented a prototype of FlowTele with about 9900 lines of
code, and substantially evaluate FlowTele’s components individu-
ally and together over various network settings.

ACKNOWLEDGMENTS
We thank our shepherd, Peter Steenkiste, and our anonymous re-
viewers for their thoughtful comments and numerous suggestions
for improvement. This work was supported in part by NSF grant
CNS-1717313, Google Cloud Research Credits awardGCP203123924,
and Taiwan (R.O.C.) MOE 108 GSSA scholarship. Zhuotao Liu (zhuo-
taoliu@tsinghua.edu.cn) and Yih-Chun Hu (yihchun@illinois.edu)
are corresponding authors.

FlowTele: Remotely Shaping Traffic on Internet-Scale Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

REFERENCES
[1] Aditya Akella, Srinivasan Seshan, and Anees Shaikh. An empirical evaluation of

wide-area internet bottlenecks. In ACM IMC, pages 101–114, 2003.
[2] Zahaib Akhtar, Yun Seong Nam, Ramesh Govindan, Sanjay Rao, Jessica Chen,

Ethan Katz-Bassett, Bruno Ribeiro, Jibin Zhan, and Hui Zhang. Oboe: auto-tuning
video ABR algorithms to network conditions. In Proceedings of the 2018 Conference
of the ACM Special Interest Group on Data Communication, pages 44–58, 2018.

[3] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and HaoWang. Information-
agnostic flow scheduling for commodity data centers. In USENIX NSDI, 2015.

[4] Stephen Bensley, Dave Thaler, Praveen Balasubramanian, Lars Eggert, and Glenn
Judd. Data Center TCP (DCTCP): TCP Congestion Control for Data Centers.
RFC 8257, October 2017.

[5] Mark Berman, Jeffrey S Chase, Lawrence Landweber, Akihiro Nakao, Max Ott,
Dipankar Raychaudhuri, Robert Ricci, and Ivan Seskar. GENI: A federated testbed
for innovative network experiments. Computer Networks, 2014.

[6] Khadija Bouraqia, Essaid Sabir, Mohamed Sadik, and Latif Ladid. Quality of
experience for streaming services: Measurements, challenges and insights. IEEE
Access, 8:13341–13361, 2020.

[7] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. BBR: Congestion-based congestion control. Queue, 14(5):20–53,
2016.

[8] Neal Cardwell, Yuchung Cheng, S Hassas Yeganeh, Ian Swett, Victor Vasiliev,
Priyaranjan Jha, Yousuk Seung, Matt Mathis, and Van Jacobson. Bbrv2: A model-
based congestion control. In Presentation in ICCRG at IETF 104th meeting, 2019.

[9] Cisco. Study: Complete visual networking index (VNI) forecast.
https://www.cisco.com/c/en_au/solutions/service-provider/visual-
networking-index-vni/index.html, accessed in Jan 2020.

[10] Federal Communications Commission. Measuring fixed broadband - tenth report,
2021 (accessed Sep 8, 2021).

[11] ADG CREATIVE. By 2021, 82% of consumer internet traffic will be video, 2020
(accessed April 2021).

[12] Jon Crowcroft and Philippe Oechslin. Differentiated end-to-end internet ser-
vices using a weighted proportional fair sharing tcp. ACM SIGCOMM Computer
Communication Review, 28(3):53–69, 1998.

[13] Cam Cullen. Over 43% of the internet is consumed by Netflix, Google,
Amazon, Facebook, Microsoft, and Apple: Global Internet Phenomena Spotlight.
https://www.sandvine.com/blog/netflix-vs.-google-vs.-amazon-vs.-facebook-
vs.-microsoft-vs.-apple-traffic-share-of-internet-brands-global-internet-
phenomena-spotlight, Accessed on 2020.

[14] Quentin De Coninck and Olivier Bonaventure. Multipath quic: Design and
evaluation. In ACM CoNext, 2017.

[15] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Joseph, Aditya Ganjam,
Jibin Zhan, and Hui Zhang. Understanding the impact of video quality on user
engagement. In Proceedings of the ACMSIGCOMM2011 Conference, SIGCOMM ’11,
page 362–373, New York, NY, USA, 2011. Association for Computing Machinery.

[16] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael Schapira.
PCC: Re-architecting congestion control for consistent high performance. In
12th USENIX Symposium on Networked Systems Design and Implementation (NSDI
15), pages 395–408, 2015.

[17] Simone Ferlin, Özgü Alay, Thomas Dreibholz, David A Hayes, and Michael Welzl.
Revisiting congestion control for multipath TCPwith shared bottleneck detection.
In IEEE INFOCOM, 2016.

[18] Sally Floyd, Mark Handley, Jitendra Padhye, and Jörg Widmer. Equation-based
congestion control for unicast applications. In Proceedings of the conference on Ap-
plications, Technologies, Architectures, and Protocols for Computer Communication
(SIGCOMM 2000), pages 43–56, August 2000.

[19] Noelle Garnier. Facebook’s “transparency center” confirms what
“shadow banned’ accounts already knew, September 2021. https:
//nrb.org/articles/facebooks-transparency-center-confirms-what-shadow-
banned-accounts-already-knew-2/. Accessed January 17, 2022.

[20] Hadas Gold. Netflix and YouTube are slowing down in Europe to keep the internet
from breaking. CNN Business, March 2020. https://www.cnn.com/2020/03/19/
tech/netflix-internet-overload-eu/index.html. Accessed June 20, 2022.

[21] Google. Google video quality report. https://www.google.com/get/
videoqualityreport/. Accessed January 2020.

[22] Google. Edge nodes (google global cache, or ggc), 2021 (accessed Sep 8, 2021).
[23] Matthew P Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert NM Watson, An-

drew W Moore, Steven Hand, and Jon Crowcroft. Queues don’t matter when
you can JUMP! In USENI NSDI, 2015.

[24] Khaled Harfoush, Azer Bestavros, and John Byers. Measuring bottleneck band-
width of targeted path segments. In IEEE INFOCOM, 2003.

[25] Sofiane Hassayoun, Janardhan Iyengar, and David Ros. Dynamic window cou-
pling for multipath congestion control. In IEEE ICNP, 2011.

[26] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard Al-
imi, et al. B4 and after: managing hierarchy, partitioning, and asymmetry for
availability and scale in google’s software-defined WAN. In ACM SIGCOMM,
2018.

[27] Tobias Hoßfeld, Lea Skorin-Kapov, Poul E Heegaard, and Martin Varela. Defini-
tion of qoe fairness in shared systems. IEEE Communications Letters, 21(1):184–
187, 2016.

[28] Ningning Hu, Li Li, Zhuoqing Morley Mao, Peter Steenkiste, and Jia Wang.
Locating Internet bottlenecks: Algorithms, measurements, and implications. ACM
SIGCOMM Computer Communication Review, 34(4):41–54, 2004.

[29] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark
Watson. A buffer-based approach to rate adaptation: Evidence from a large video
streaming service. In ACM SIGCOMM, 2014.

[30] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, et al.
B4: Experience with a globally-deployed software definedWAN. ACM SIGCOMM,
2013.

[31] Peter Kafka. YouTube ‘demonetization,’ explained for normals. Vox., Septem-
ber 2016. https://www.vox.com/2016/9/4/12795214/youtube-demonetization-
explainer. Accessed January 17, 2022.

[32] Min Sik Kim, Taekhyun Kim, Yong-June Shin, Simon S Lam, and Edward J Powers.
A wavelet-based approach to detect shared congestion. IEEE/ACM Transactions
on Networking, 2008.

[33] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil Kasinad-
huni, Enrique Cauich Zermeno, C Stephen Gunn, Jing Ai, Björn Carlin, Mihai
Amarandei-Stavila, et al. BwE: Flexible, hierarchical bandwidth allocation for
WAN distributed computing. In Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, pages 1–14, 2015.

[34] Kevin Lai and Mary Baker. Nettimer: A tool for measuring bottleneck link
bandwidth. In USITS, volume 1, pages 11–11, 2001.

[35] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. The
QUIC transport protocol: Design and internet-scale deployment. In Proceedings
of the Conference of the ACM Special Interest Group on Data Communication, pages
183–196, 2017.

[36] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy, and Megha
Manohara. Toward a practical perceptual video quality metric. The Netflix
Tech Blog, 6, 2016.

[37] Zhuotao Liu, Yuan Cao, Min Zhu, and Wei Ge. Umbrella: Enabling ISPs to
offer readily deployable and privacy-preserving DDoS prevention services. IEEE
Transactions on Information Forensics and Security, 2018.

[38] Zhuotao Liu, Kai Chen, Haitao Wu, Shuihai Hu, Yih-Chun Hu, Yi Wang, and
Gong Zhang. Enabling work-conserving bandwidth guarantees for multi-tenant
datacenters via dynamic tenant-queue binding. In IEEE INFOCOM, 2018.

[39] Zhuotao Liu, Hao Jin, Yih-Chun Hu, and Michael Bailey. MiddlePolice: Toward
enforcing destination-defined policies in the middle of the Internet. In ACM CCS,
2016.

[40] Zhuotao Liu, Hao Jin, Yih-Chun Hu, and Michael Bailey. Practical proactive
DDoS-attackmitigation via endpoint-driven in-network traffic control. IEEE/ACM
Transactions on Networking, 2018.

[41] Michael J Magazine and Maw-Sheng Chern. A note on approximation schemes
for multidimensional knapsack problems. Mathematics of Operations Research,
9(2):244–247, 1984.

[42] Massimiliano Marcon, Marcel Dischinger, Krishna P Gummadi, and Amin Vahdat.
The local and global effects of traffic shaping in the internet. In IEEE COMSNETS,
2011.

[43] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. The macro-
scopic behavior of the TCP congestion avoidance algorithm. ACM SIGCOMM,
1997.

[44] MiniMatters. The best video length for different videos on YouTube. https:
//www.minimatters.com/youtube-best-video-length/. Accessed Jan 2020.

[45] Vikram Nathan, Vibhaalakshmi Sivaraman, Ravichandra Addanki, Mehrdad
Khani, Prateesh Goyal, and Mohammad Alizadeh. End-to-end transport for
video qoe fairness. In Proceedings of the ACM Special Interest Group on Data Com-
munication, SIGCOMM ’19, page 408–423, New York, NY, USA, 2019. Association
for Computing Machinery.

[46] Gabriel Nicholas. Shadowbanning is big tech’s big problem. The Atlantic, April
2022. https://www.theatlantic.com/technology/archive/2022/04/social-media-
shadowbans-tiktok-twitter/629702/. Accessed June 20, 2022.

[47] Costin Raiciu, Mark Handley, and Damon Wischik. Coupled congestion control
for multipath transport protocols. Technical report, 2011.

[48] Rakesh Rao Ramachandra Rao, Steve Göring, Werner Robitza, Bernhard Feiten,
and Alexander Raake. Avt-vqdb-uhd-1: A large scale video quality database for
uhd-1. In 2019 IEEE International Symposium on Multimedia (ISM), pages 17–177,
2019.

[49] Vinay Joseph Ribeiro, Rudolf H Riedi, Richard G Baraniuk, Jiri Navratil, and Les
Cottrell. pathchirp: Efficient available bandwidth estimation for network paths.
In Passive and active measurement workshop, 2003.

[50] Giorgio Roffo and Alessandro Vinciarelli. Personality in computational adver-
tising: A benchmark. In International Workshop on Emotions and Personality in
Personalized Systems at ACM RecSys (EMPIRE 2016), 2016.

[51] Dan Rubenstein, Jim Kurose, and Don Towsley. Detecting shared congestion of
flows via end-to-end measurement. IEEE/ACM Transactions On Networking, 2002.

https://www.cisco.com/c/en_au/solutions/service-provider/visual-networking-index-vni/index.html
https://www.cisco.com/c/en_au/solutions/service-provider/visual-networking-index-vni/index.html
https://www.sandvine.com/blog/netflix-vs.-google-vs.-amazon-vs.-facebook-vs.-microsoft-vs.-apple-traffic-share-of-internet-brands-global-internet-phenomena-spotlight
https://www.sandvine.com/blog/netflix-vs.-google-vs.-amazon-vs.-facebook-vs.-microsoft-vs.-apple-traffic-share-of-internet-brands-global-internet-phenomena-spotlight
https://www.sandvine.com/blog/netflix-vs.-google-vs.-amazon-vs.-facebook-vs.-microsoft-vs.-apple-traffic-share-of-internet-brands-global-internet-phenomena-spotlight
https://nrb.org/articles/facebooks-transparency-center-confirms-what-shadow-banned-accounts-already-knew-2/
https://nrb.org/articles/facebooks-transparency-center-confirms-what-shadow-banned-accounts-already-knew-2/
https://nrb.org/articles/facebooks-transparency-center-confirms-what-shadow-banned-accounts-already-knew-2/
https://www.cnn.com/2020/03/19/tech/netflix-internet-overload-eu/index.html
https://www.cnn.com/2020/03/19/tech/netflix-internet-overload-eu/index.html
https://www.google.com/get/videoqualityreport/
https://www.google.com/get/videoqualityreport/
https://www.vox.com/2016/9/4/12795214/youtube-demonetization-explainer
https://www.vox.com/2016/9/4/12795214/youtube-demonetization-explainer
https://www.minimatters.com/youtube-best-video-length/
https://www.minimatters.com/youtube-best-video-length/
https://www.theatlantic.com/technology/archive/2022/04/social-media-shadowbans-tiktok-twitter/629702/
https://www.theatlantic.com/technology/archive/2022/04/social-media-shadowbans-tiktok-twitter/629702/

CoNEXT ’22, December 6–9, 2022, Roma, Italy Bo-Rong Chen, Zhuotao Liu, et al.

[52] Stefan Saroiu, P KrishnaGummadi, and StevenDGribble. Sprobe: A fast technique
for measuring bottleneck bandwidth in uncooperative environments. In IEEE
INFOCOM, 2002.

[53] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett, Harsha V
Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr Lapukhov, and Hongyi
Zeng. Engineering egress with edge fabric: Steering oceans of content to the
world. In ACM SIGCOMM, pages 418–431, 2017.

[54] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, et al. Jupiter
rising: A decade of clos topologies and centralized control in google’s datacenter
network. ACM SIGCOMM CCR, 2015.

[55] Prabhakant Sinha and Andris A Zoltners. The multiple-choice knapsack problem.
Operations Research, 27(3):503–515, 1979.

[56] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K Sitaraman. Bola: Near-optimal
bitrate adaptation for online videos. IEEE/ACM Transactions on Networking, 2020.

[57] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu Wang, Tao
Liu, and Bruno Sinopoli. CS2P: Improving video bitrate selection and adaptation
with data-driven throughput prediction. In ACM SIGCOMM, 2016.

[58] Mark Taylor. Verizon’s accidental mea culpa. Archived at https://ecfsapi.fcc.gov/
file/7521706256.pdf, July 2014. Accessed on March 2020.

[59] Telecommunication Standardization Sector of ITU. Vocabulary for performance,
quality of service and quality of experience. ITU-T Rec. P.10/G.100 (11/2017),
2017.

[60] Catherine Thorbecke. YouTube throttling streaming quality glob-
ally as coronavirus forces people indoors. ABC News, March 2020.
https://abcnews.go.com/Technology/netflix-youtube-throttle-streaming-
quality-europe-coronavirus-forces/story?id=69754458. Accessed June 20, 2022.

[61] Linus Tech Tips. Reacting to our most PROFITABLE videos! YouTube, June 2022.
https://www.youtube.com/watch?v=Rh5hL47z2us&t=326s. Accessed June 20,
2022.

[62] B. Varkey. Principles of clinical ethics and their application to practice. Medical
Principles and Practice, 30:17–28, 2021.

[63] Wenjia Wei, Yansen Wang, Kaiping Xue, David SL Wei, Jiangping Han, and
Peilin Hong. Shared bottleneck detection based on congestion interval variance
measurement. IEEE Communications Letters, 2018.

[64] Kok-Kiong Yap, Murtaza Motiwala, Jeremy Rahe, Steve Padgett, Matthew Holli-
man, Gary Baldus, Marcus Hines, Taeeun Kim, Ashok Narayanan, Ankur Jain,
et al. Taking the edge off with espresso: Scale, reliability and programmability
for global internet peering. In ACM SIGCOMM, 2017.

[65] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A control-theoretic
approach for dynamic adaptive video streaming over HTTP. In Proceedings of
the 2015 ACM Conference on Special Interest Group on Data Communication, pages
325–338, 2015.

[66] YouTube. YouTube recommended upload encoding settings. https:
//support.google.com/youtube/answer/1722171?hl=en#zippy=%2Cbitrate. Ac-
cessed October 18, 2022.

[67] YouTube. Recommended upload encoding settings. https://support.google.com/
youtube/answer/1722171?hl=en, Accessed Jan 2020.

[68] Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang, Zhenyu Li, , et al. Xlink:
Qoe-driven multi-path quic transport in large-scale video services. In ACM
SIGCOMM, 2021.

A QALLOC SOLVER
In this section, we present the detailed solver design to solve the
optimization problem defined in § 4.2. To solve the problem, qAlloc
needs to determine the target bitrate and the allocated bandwidth
for the next chunk. A simple approach is to choose both 𝑅1,𝑖 and
B𝑖 directly at every control interval. However, there are two issues
with such an approach.

First, the bitrate 𝑅1,𝑖 can not be switched to until current chunk
ends, and the end of control interval does not necessarily coincide
with the end of the chunk duration𝑇𝑐 . To more rapidly accomodate
changes in available bandwidth, a small control interval provides
bandwidth allocations that better reflect available bandwidth. How-
ever, since quality switches negatively affect QoE, frequent bitrate
decisions are not ideal, especially when it is possible to directly
control the bandwidth. Thus, we often choose a control interval
smaller than𝑇𝑐 , allowing bandwidth to be adjusted more frequently
than bitrate. Second, the chunk boundaries of all the streams may
not be synchronized, and the time at which the new bitrates take

effects can be quite different. Thus, it is not ideal to always make a
centralized decision of (𝑅1,𝑖 ,B𝑖) for asynchronous flows.

To address this limitation, qAlloc switches between two modes
for each flow. In Free Mode, qAlloc is free to select both 𝑅1,𝑖 and
B𝑖 for flow 𝑖; whereas in Constrained Mode, qAlloc is constrained
by the previous chosen 𝑅1,𝑖 and can only select bandwidth B𝑖 for
flow 𝑖 . Free mode ends as soon as a different target bitrate is chosen
(at the boundaries of control intervals), and constrained mode ends
when the flow switches to the target bitrate (at the boundaries of
chunks). With these two modes, the switch of bitrate and band-
width are decoupled, and qAlloc is able to focus on the bandwidth
allocation for a specific target bitrate without changing bitrate too
often. Additionally, the mode information is provided to the cen-
tralized controller so qAlloc knows whether to allocate B𝑖 only or
jointly (𝑅1,𝑖 ,B𝑖), which helps balance short term and long term
optimization performance.

When a new, higher bitrate is chosen, we keep two chunks of
buffer and discard the rest, to improve user-perceived quality more
quickly without excessively increasing the risk of buffering; when a
lower bitrate is chosen, we keep the entire buffer to avoid possible
rebuffering.

We summarize the qAlloc optimization solver in Algorithm 2. At
its core, the solver aims to find the largest achievable QoE given the
bandwidth limit. To facilitate the exploration, it computes a qtable
for each flow 𝑖 that describes the lowest-bandwidth approach from
any given start state ((𝑅0, ℓ) in Free mode and (𝑅0, ℓ, 𝑅p) in Con-
strained mode) to achieve any given QoE, by exploring all possible
quantized allocations of bitrate (from YouTube resolutions [67]) and
bandwidth (from 1Mbps to 100Mbps). Different flows typically have
different qtable since their available bandwidth and MOS-to-bitrate
functions (i.e., the 𝑞𝑐 () in Equation (2)) vary. Given the qtable, the
solver performs a binary search over all possible QoEs to determine
the highest achievable QoE, upon which it returns the bitrate 𝑅1,𝑖
and bandwidth B𝑖 as the allocation for the next video chunk.

Allocation Decisions

Bandwidth Estimate

TCP module

fShaper node

TCP module

fShaper node

fShaper Main fAllocator

…

Figure 18: The architecture of fShaper.

B DETAILED DESIGNS CHOICES IN FSHAPER
B.1 fShaper Parameters
Each server inside a cluster (or a CDN) contains a fShaper node, to
which the server reports RTT and packets-in-flight for each flow
from tcp_info to fShaper Main every 10 milliseconds, as shown in
Figure 18. The number of packets-in-flight is estimated using

packets-in-flight = tcp_info.tcpi_unacked

− tcp_info.tcpi_sacked
− tcp_info.tcpi_lost
+ tcp_info.tcpi_retrans,

https://ecfsapi.fcc.gov/file/7521706256.pdf
https://ecfsapi.fcc.gov/file/7521706256.pdf
https://abcnews.go.com/Technology/netflix-youtube-throttle-streaming-quality-europe-coronavirus-forces/story?id=69754458
https://abcnews.go.com/Technology/netflix-youtube-throttle-streaming-quality-europe-coronavirus-forces/story?id=69754458
https://www.youtube.com/watch?v=Rh5hL47z2us&t=326s
https://support.google.com/youtube/answer/1722171?hl=en#zippy=%2Cbitrate
https://support.google.com/youtube/answer/1722171?hl=en#zippy=%2Cbitrate
https://support.google.com/youtube/answer/1722171?hl=en
https://support.google.com/youtube/answer/1722171?hl=en

FlowTele: Remotely Shaping Traffic on Internet-Scale Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

Func: qAlloc Optimization Problem:
maximize

{
min𝑖 QoE𝐾𝑇

𝑖,avg

}
subject to

∑
𝑖 B𝑖 ≤ Btotal // Constraints are simplified here

Func: qAlloc Solver: // Perform per-QoE allocation for flow 𝑖
for each flow 𝑖 do qtable𝑖 ← BuildTable(𝑖)
while𝑄min < 𝑄max − 𝜖 // Seek the maximum achievable QoE
do

𝑄 ← (𝑄min +𝑄max)/2
for each flow 𝑖 do

if a pending bitrate allocation 𝑅p,𝑖 exists then
// Constrained mode: using 𝑅p,𝑖 as 𝑅1,𝑖
(𝑅1,𝑖 , B𝑖) ← LookUp

(
qtablec𝑖 , (𝑅0,𝑖 , ℓ𝑖 , 𝑅p,𝑖 ,𝑄)

)
else // Free mode: choose both birates and bandwidth
(𝑅1,𝑖 , B𝑖) ← LookUp

(
qtablef𝑖 , (𝑅0,𝑖 , ℓ𝑖 ,𝑄)

)
if

∑
𝑖 B𝑖 ≤ Btotal then
𝑄min ← 𝑄 // Achievable
save each (𝑅1,𝑖 , B𝑖)

else𝑄max ← 𝑄 // Unachievable

return most recently saved (𝑅1,𝑖 , B𝑖) as allocation for flow 𝑖

Func: BuildTable(i) // Compute separate qtable for each flow
for each start state (𝑅0, ℓ) ∈ {BR, BUF } do

for each allocation (𝑅1, B) ∈ {BR, BW } in order of
non-increasing B do

// Affected by the flow’s available bandwidth
Compute expected QoE𝑄 using Equation (2)
qtablef𝑖 (𝑅0, ℓ,𝑄) ← (𝑅1, B) // Free mode

for each start state (𝑅0, ℓ, 𝑅p) ∈ {BR, BUF, BR } do
for each allocation B ∈ {BW } in descending order do

Compute expected QoE𝑄 using Equation (2)
qtablec𝑖 (𝑅0, ℓ, 𝑅p,𝑄) ← (𝑅p, B) // Constrained mode

Algorithm 2: The QoE Optimization Algorithm in qAlloc

as in tcp_packets_in_flight(). This 100 Hz sample rate pro-
vides 10 samples of RTT and packets-in-flight per adjustment in-
terval, which fShaper averages. fShaper Main then aggregates the
estimated bandwidths and fAllocator allocates the bandwidth. We
modify the TCP kernel module so that our fShaper node overwrites
cwnd with the value allocated by fShaper Main in the function
tcp_congestion_ops->cong_control().

B.2 fAllocator with Discrete Video Rates
In a video environment, fAllocator chooses for each flow a (en-
coding bandwidth, client video buffer) pair, calculates the required
bandwidth for each flow, and provides those bandwidth targets
to fShaper. The determination of required bandwidth depends on
the current client video buffer, which can be reported directly by
the client, or the server can determine from the number of bytes
acknowledged by the client, in combination with a client report of
playback position and speed.

Given a discrete bitrate, the fAllocator-selected rate will either
result in increased buffer, no buffer size change, or decreased buffer.
For a single-flow, the fAllocator might choose a higher encoding
rate for the next chunk once the buffer has been sufficiently filled,
thus providing a long-term average closer to the allocated rate. In
the multi-flow scenario, flows with sufficient buffer can lend their
bandwidth fair-share to recipient flows, increasing the encoding
rate that such recipient flows can sustainably stream. In unbuffered

applications with discrete rates, FlowTele likely allows for only
limited improvements, but even with small buffers (our evaluations
do not select buffer sizes exceeding 20 seconds), applications can
show significant improvements even when the set of possible rates
are discrete.

Figure 19(a) shows the adaptation of vAlloc in practice. We ran-
domly selected 8 flows from the 80 FlowTele flows and plot their
selected resolution (encoding rate) and buffer time. In this run,
the system would be application-limited if all flows were sent at
360p, and would have excessive buffering if all flows were sent at
720p. vAlloc changes both resolution and buffer time to improve
the performance of higher-value flows when conditions allow.

0 10 20 30 40 50 60 70
Time (s)

0

2

4

6

8

10

12

14

C
li
e
n

t
V

id
e
o

 B
u

ff
e
r

T
im

e
 (

s)

flow_0
flow_1

flow_2
flow_3

flow_4
flow_5

flow_6
flow_7

0 10 20 30 40 50 60 70
Time (s)

360p

480p

720p

1080p

B
it

ra
te

flow_0
flow_1

flow_2
flow_3

flow_4
flow_5

flow_6
flow_7

(a) vAlloc with controlled flows.

0 10 20 30 40 50 60 70
Time (s)

0

2

4

6

8

10

12

14

C
li
e
n

t
V

id
e
o

 B
u

ff
e
r

T
im

e
 (

s)

flow_0
flow_1

flow_2
flow_3

flow_4
flow_5

flow_6
flow_7

0 10 20 30 40 50 60 70
Time (s)

360p

480p

720p

1080p

B
it

ra
te

flow_0
flow_1

flow_2
flow_3

flow_4
flow_5

flow_6
flow_7

(b) vAlloc with calibrator flows.
Figure 19: vAlloc allocations over time.

B.3 fAllocator for Video with Calibrator Flows
A calibrator flow is one regulated by a one-flow instance of fAllo-
cator, so that the video encoding rate is selected on a per-chunk
basis by fAllocator, while the cwnd is determined using a standard
CCA. fAllocator uses historical goodput to determine target reso-
lution and client video buffer time, and as client video buffer time
increases or decreases, fAllocator can switch a flow between two
encoding rates so that the long-term average bandwidth is slightly
above the long-term average encoding rate. An example of this
behavior is shown in Figure 19(b). Future work can include a more
complete design for fAllocator for such scenarios, since significant
changes in video encoding rate can result in lower QoE.

C STANDALONE EVALUATIONS
In this section, we report the performance gains of the standalone
qAlloc and fShaper in various settings.

C.1 Standalone qAlloc Evaluations
We evaluate the standalone qAlloc using our simulated platform,
which consists of emulated network links, virtual video-streaming
clients and a sender, qAlloc, and a QoE monitor to measure QoE
metrics. The sender and virtual clients are connected via a shared
link and multiple end-user links (each end-user link connecting
with one client). To emulate an end-user link, we generate the real-
time link bandwidth based on the Markov model described in § 3.2.
We enforce a total bandwidth limit on the shared link to control

CoNEXT ’22, December 6–9, 2022, Roma, Italy Bo-Rong Chen, Zhuotao Liu, et al.

10 30 50 70 90 110130150170
t (s)

2

3

MO
S

Link set 1
Total bandwidth 40 Mbps

10 30 50 70 90 110130150170
t (s)

2

3

MO
S

Link set 1
Total bandwidth 50 Mbps

qAlloc off
qAlloc on

10 30 50 70 90 110130150170
t (s)

3

4

MO
S

Link set 2
Total bandwidth 40 Mbps

10 30 50 70 90 110130150170
t (s)

3

4

MO
S

Link set 2
Total bandwidth 50 Mbps

Figure 20: qAlloc results for Group One evaluation.

Set 1 Set 2 Set 3 Set 4 Set 5

3

4

M
O

S

Shared Link Bandwidth: 400 Mbps
qAlloc off
qAlloc on

Set 1 Set 2 Set 3 Set 4 Set 5

3

4

M
O

S

Shared Link Bandwidth: 500 Mbps

Figure 21: qAlloc results for Group Two evaluation.

Experiment
Set

Number of
End-User Links

Advertised
Bandwidth

Bandwidth
s.t.d.

Video
No.

1
3 10 Mbps 0.5 Mbps 8
4 10 Mbps 1 Mbps 8
3 10 Mbps 2 Mbps 8

2
3 10 Mbps 1 Mbps 3
4 10 Mbps 1 Mbps 5
3 10 Mbps 1 Mbps 7

Table 8: Experimental setting for Group One.

Set Number of
End-User Links

Advertised
Bandwidth

Bandwidth Standard
Deviation

1 ∼ 5 100 Uniform
[10, 30] Mbps

Uniform [0, 0.2] ×
advertised_bandwidth

Table 9: Experimental setting for Group Two.

whether the shared link is the bottleneck or not. Each virtual client
updates its buffer length based the current video bitrate and its
actual achievable bandwidth, emulating video playback, stalling,
and video quality changes.

To demonstrate the ability of qAlloc to improve QoE fairness by
better allocating the total bandwidth, we compare QoE performance
with and without qAlloc allocating the shared link bandwidth. To
ensure that the comparison focuses on bandwidth allocation, the

algorithm for choosing resolution remains the same (i.e., both sce-
narios use the solver in Algorithm 2 to decide the resolution in each
evaluation interval). When qAlloc does not control bandwidth allo-
cations for the shared link, we give each flow its fair share over the
shared link. We conduct the following two groups of experiments
to evaluate qAlloc.
Group One. In this group, we choose two sets of end-user link and
videos listed in Table 8. Both sets have 10 end-user links (i.e., virtual
clients), but each set has different bandwidth settings. In the first
set, the bandwidth variances are different; in the second set, videos
are different. We evaluate two bandwidth values for the shared link:
40Mbps and 50Mbps, and the per-flow fair share are 4Mbps and
5Mbps, both making the shared link the co-bottleneck for qAlloc
to take effect. We run the simulations for 180 seconds and plot the
QoEs for each 20 second interval against time in Figure 20.

Our results show that, when the shared link bandwidth is 40Mbps,
qAlloc improves min𝑞𝑖 by 21.9% and 6.9% on average for experi-
ment set 1 and 2, respectively; when the shared link bandwidth is
50Mbps, qAlloc improves min𝑞𝑖 by 7.5% and 11.3%. In the first link
set, the original QoE is unstable due to the bandwidth variation, and
qAlloc successfully prevents the occasional low QoE of the some
worst user links through the centralized control; in the second set,
the original QoE has a large deviation caused by the different video
type, and qAlloc decreases the range of QoEs, resulting in reduced
unfairness. This also demonstrates that qAlloc can make all flows
more equal in terms of QoE, which is exactly the objective of qAlloc.
Overall, the results show qAlloc’s ability to improve QoE fairness
when there exists either user link bandwidth variation or diversity
among the video types.
Group Two. To evaluate qAlloc in larger scenarios, we generated
100 end-user links with random advertised bandwidth, variance
and video types, and repeat five sets of such experiment, as shown
in Table 9. For each set of links, we perform two runs, sort the QoEs
among flows, and average them across all intervals. We plot the
resulting QoEs for each link set in Figure 21 with both 400Mbps and
500Mbps shared link bandwidth. qAlloc improves min𝑞𝑖 by 30.0%
and 17.2%, respectively in the cases of 400Mbps and 500Mbps shared
link bandwidth; and their QoE fairness of Hossfeld’s definition
[27] are improved by 18.8% and 17.1%. The performance here is
significantly better than Group One as a wider range of advertised
bandwidth, deviation as well as the video type are combined and
thus provides more room for qAlloc to allocate the bitrate and the
total bandwidth.

C.2 Standalone fShaper Evaluations
We evaluate the standalone fShaper over the Internet using various
settings. The topology settings are shown in Table 2. All flows are
co-bottlenecked at the last link.
Internal Weighted Fairness and External Friendliness. We
repeat the experiments describd in § 3.4 using the Asia network
setting of Table 2. One sight difference in the setting is we have
7 recipient flows (instead of 10) for the 4:1 case in the minority
scenario. The results are plotted in Figure 22. Scenario-by-scenario
results are given in Table 10. Overall, we see fShaper is effective in
different network environments.

In addition, even with a rich model like TCP BBRv2 as cross
traffic, fShaper can have the same level of external friendliness as

FlowTele: Remotely Shaping Traffic on Internet-Scale Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

0 100 200 300 400 500 600 700 800 900 1000
Goodput (Mbps)

9:1
(90:10)

3:1
(76:24)

4:1
(79:21)

Cubic
 Original

Cross Traffic

Calibrator Flow Recepient Flow

Donor Flows

(a) Majority Scenario.

0 100 200 300 400 500 600 700 800 900 1000
Goodput (Mbps)

9:1
(90:10)

3:1
(76:24)

4:1
(80:20)

Cubic
 Original

Cross Traffic

Calibrator Flow Recepient Flow

Donor Flows

(b) Minority Scenario.

Figure 22: Evaluating fShaper for the Asia network setting. The y-
axis plots the target weight allocations and the achieved allocations
(enclosed in bracket) between the recipient flow and the aggregate
donor flow.

Majority
Scenario

Ratio: Self-Flows /
Cross-Traffic

Ratio: donor /
recipient

Among
donor Flows

Among
recipient Flows

the 4:1 case Target 71.31 / 28.69
(all Cubic flows) 4 / 1 Equal Share Equal Share

Achieved 70.18 / 29.82 79.68 / 20.32 0.0046Mbps
(Goodput s.t.d.) 0.0107

the 3:1 case Target 71.31 / 28.69 3 / 1 Equal Share Ratio: [40:30:30]
Achieved 71.48 / 28.52 75.77 / 24.23 0043Mpbs [36.52:31.64:31.82]

the 9:1 case Target 71.31 / 28.69 9 / 1 Equal Share One recipient
Achieved 70.42 / 29.58 89.94 / 10.06 0.0049Mbps One recipient

Minority
Scenario

Ratio: Self-Flows /
Cross-Traffic

Ratio: donor /
recipient

Among
donor Flows

Among
recipient Flows

the 4:1 case Target 44.82 / 55.17
(all Cubic flows) 4 / 1 Equal Share Equal Share

Achieved 46.73 / 53.27 79.78 / 20.22 0.0052Mbps 0.0026Mbps

the 3:1 case Target 44.82 / 55.17 3 / 1 Equal Share Ratio: [40:30:30]
Achieved 46.22 / 53.78 74.28 / 25.72 0.0053Mbps [40.00:30.01:29.99]

the 9:1 case Target 44.82 / 55.17 9 / 1 Equal Share One recipient
Achieved 47.36 / 52.63 89.68 / 10.32 0.0051Mbps One recipient

Table 10: Scenario-by-scenario fShaper results in the Asia network
setting.

0 100 200 300 400 500 600 700 800
Goodput (Mbps)

3:1
(76:24)

BBR2
 Original

Cross Traffic Calibrator Flow Recepient FlowDonor Flows

Figure 23: fShaper achieves the same level of external friendliness
as TCP BBRv2 flows.

1 5 15 20 25 30 35 45
Percentage of Calibrator Flow (%)

20

30

40

50

60

G
o

o
d

p
u

t
st

d
 d

e
v

(M
b

p
s)

0.50

0.51

0.52

0.53

0.54

Fr
ie

n
d

li
n

e
ss

 (
x
T
ra

ff
ic

/
to

ta
l)Goodput std dev Friendliness

Figure 24: With varying percentage of calibrator flows.

TCP BBRv2 flows by using the same variant as calibrator flows, as
shown in Figure 23.
Goodput Variance by Using Calibrator Flows. Suppose 𝑋
is the goodput of each flows, so we have the variance of 𝑉ori =

Ntotal𝑉𝑎𝑟 (𝑋) forNtotal flows. Now, since fShaper utilizes the good-
put of Ncalibrator calibrator flows and scales them by the factor of
Ntotal
Ncalibrator

, we have:

Ncalibrator𝑉𝑎𝑟

(
Ntotal
Ncalibrator

𝑋

)
= Ncalibrator

N2
total

N2
calibrator

𝑉𝑎𝑟 (𝑋)

=
Ntotal
Ncalibrator

Ntotal𝑉𝑎𝑟 (𝑋)

=
Ntotal
Ncalibrator

𝑉ori

This means that we introduce a factor of Ntotal
Ncalibrator

to the good-
put variance compared with the original case. In addition, since
Ntotal
Ncalibrator

≥ 1, using fewer calibrator flows causes higher goodput
variance across controlled flows, but using more calibrator flows
reduces the number of flows that can benefit from fAllocator. To
evaluate this effect, we ran 80 FlowTele flows and 80 cross traffic
flows traffic flows with Cubic using 1Gbps bandwidth and RTT
20 ms. We calculate the friendliness of the 80 FlowTele flows and
the aggregate goodput variance experienced across FlowTele flows
when measured as a time-series on 1 second intervals. These re-
sults, plotted in Figure 24, show that as we use fewer than 15%
calibrator flows, goodput variance increases. We conservatively
chose 25% of flows as calibrator to balance the goodput variance
and performance gain of FlowTele.
Retransmission Rate. We further evaluate the retransmission
rate of fShaper-controlled flows. As shown in Figure 25, these
flows exhibit very similar retransmission rates as TCP Cubic flows.
This indicates that although fShaper does not directly react to
packet losses of individual non-calibrator flows, its periodic cwnd
overwrites do not have result in excessive losses in controlled flows.

0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050
Retransmission Rate

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Cubic Original
9:1
3:1
4:1

Figure 25: The retransmission rate in fShaper is stable.

D INTEGRATED EVALUATIONS
In this section, we provide the integrated evaluations for FlowTele
when it uses qAlloc to optimize user experiences (which we call Q-
FlowTele). We further report additional results for FlowTele when
it uses vAlloc to maximize aggregate user value (which we call
V-FlowTele in this section).

D.1 Q-FlowTele Evaluations
We demonstrate the performance of Q-FlowTele in real network
and compare it with MulCubic, which uses Q-FlowTele but re-
places fShaper with MulCubic, andMinerva, which implements
Minerva’s application layer algorithm [45]. To allow for a fair com-
parison, we model QoE using the same MOS as qAlloc instead of
VMAF (thoughwe use the same QoE chunkmodel), and we simulate
ABR streaming for 10 chunks instead of 5. We set control interval

CoNEXT ’22, December 6–9, 2022, Roma, Italy Bo-Rong Chen, Zhuotao Liu, et al.

ISP A ISP B ISP E ISP F

2
3
4

Qo
E

of
 F

lo
ws

Cubic
MulCubic
Minerva
Q-FlowTele

(a) Small user links

ISP A ISP B ISP E ISP F

2
3
4

Qo
E

of
 F

lo
ws

Cubic
MulCubic
Minerva
Q-FlowTele

(b) Large user links
Figure 26: Comparing Q-FlowTele with prior arts.

of Q-FlowTele to 0.5 second, prediction horizon 𝑇 to 20 seconds,
and chunk duration 𝑇𝑐 to 2 seconds.

We use the fifth network setting from Table 3, from the flow set-
tings shown in Table 4, we useA, B, where flows are co-bottlenecked,
and E, F, where flows are not co-bottlenecked. As link variation
is not considered in [45], we consider two sets of user links: a
“large user link” case where user links are set to 25Mbps to remove
the effect of end-user link disparities, and a “small user link” case
that replicates our original settings in Table 4. For each control
scheme and flow setting, we conducted three runs, collected the
average QoEs of each flow over time, and plotted their distribution
in Figure 26.

We draw four main conclusions. First, regardless of the user link
quality, Q-FlowTele has the best min-QoE as well as QoE fairness
in the co-bottleneck networks, (i.e., setting A and B), followed by
Minerva, MulCubic, and Cubic. For instance, in setting A and B,
Q-FlowTele improves min-QoE by 34.4% and 64.2%, respectively, in
the “large user links” case, and improve QoE fairness by 27.1% and
21.2%, respectively. Minerva sometimes improves the median QoE,
but generally fails to improve the QoE fairness. Possible reasons are:
(i)Minerva performs worse with more flows (10 and 104 here); (ii)
Minerva suffers significantly from the poor shaping ability of Mul-
Cubic, as shown by MulCubic’s result. Second, MulCubic performs
worse than Q-FlowTele, showing that MulCubic cannot achieve
the fast convergence required by qAlloc. Third, the median QoE
of Q-FlowTele is not as good as MulCubic and Minerva in setting
A, because of the trade-off between min-QoE and the overall QoE
in the optimizer (Q-FlowTele optimizes min-QoE). Finally, when
the flows are not co-bottlenecked, all schemes perform similarly to
Cubic, showing that Q-FlowTele, like Minerva and MulCubic, do
not reduce QoE performance when bandwidth is unconstrained.

D.2 Additional Evaluations for V-FlowTele
In this part, we present additional evaluation results for V-FlowTele.
Bandwidth allocations and Shaping Effectiveness. We use the
bottleneck capacity of ISP C trace (930Mbps) in Table 4. We sorted
users by the value of showing them a single advertisement and
grouped users into deciles; Figure 27 shows the goodput achieved by

fShaper as compared to the bandwidth requested by vAlloc, grouped
by these deciles. vAlloc provides significantlymore bandwidth to the
top three deciles, but provides sufficient bandwidth to the remaining
users to continue to retain them. (i.e., vAlloc’s high-value users do
not crowd out low-value users). fShaper goodput tracks these vAlloc
allocations fairly closely.

0 20 40 60 80 100 120
Time (s)

0

200

400

600

800

B
a
n

d
w

id
th

 (
M

b
p

s)

Realtime Goodput

0 20 40 60 80 100 120
Time (s)

0

200

400

600

800

Realtime Allocated Bandwidth by vAlloc

Figure 27: Realtime V-FlowTele allocated bandwidth and the actual
achieved goodput, aggregated by decile.

0 20 40 60 80 100 120
Time (s)

0

1

2

3

4

5

A
g

g
re

g
a
te

 R
e
a
l-

T
im

e
 V

a
lu

e

Total value of all flows in the first decile

second decile

third decile

fourth decile

fifth decile
sixth decile
seventh decile

FlowTele

0 20 40 60 80 100 120
Time (s)

0

1

2

3

4

5

eighth decile
ninth decile
last decile

Benchmark

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Run Number

1.15

1.20

1.25

1.30

1.35

T
o

ta
l

U
se

r
V

a
lu

e

 (
N

o
rm

.
to

 B
e
n

ch
m

a
rk

)

Figure 28: Realtime user values for V-FlowTele and unshaped (TCP)
traffic, aggregated by decile (more-valuable users towards the bot-
tom).

0 25 50 75 100 125 150 175 200
Time (s)

1.00

1.05

1.10

1.15

1.20

T
o

ta
l

U
se

r
V

a
lu

e

 (
N

o
rm

.
to

 B
e
n

ch
m

a
rk

)

(a) ISP B (430Mbps).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Run Number

1.00

1.05

1.10

1.15

1.20

T
o

ta
l
U

se
r

V
a
lu

e

 (
N

o
rm

.
to

 B
e
n

ch
m

a
rk

)

(b) ISP B (430Mbps).
Figure 29: Aggregate user values achieved V-FlowTele, normalized
to uncontrolled cases.

Realtime User Value Improvement. Figure 28 shows per-user
real-time value with vAlloc and without any control (i.e., TCP fair-
ness), grouped by user-value decile. When controlled by V-FlowTele,
total user value increases significantly. The bottom graph of Fig-
ure 28 shows that at all times, all flows have FlowTele-controlled

FlowTele: Remotely Shaping Traffic on Internet-Scale Networks CoNEXT ’22, December 6–9, 2022, Roma, Italy

0 2000 4000 6000
AdWords ID

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

V
a
lu

e

KansasCity

Original
Fitted

0 2000 4000 6000
AdWords ID

0.00

0.02

0.04

0.06

0.08

V
a
lu

e

SanJose

Original
Fitted

0 2000 4000 6000
AdWords ID

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

V
a
lu

e

Seattle

Original
Fitted

0 2000 4000 6000
AdWords ID

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

V
a
lu

e

Chicago

Original
Fitted

0 2000 4000 6000
AdWords ID

0.00

0.02

0.04

0.06

0.08

V
a
lu

e
Houston

Original
Fitted

0 2000 4000 6000
AdWords ID

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

V
a
lu

e

Pittsburg

Original
Fitted

0 2000 4000 6000
AdWords ID

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

V
a
lu

e

WashingtonDC

Original
Fitted

0 2000 4000 6000
AdWords ID

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

V
a
lu

e

Dallas

Original
Fitted

0 2000 4000 6000
AdWords ID

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

V
a
lu

e

Boston

Original
Fitted

Figure 30: Additional advertisement values and their fitted curves of
the Google Adwords we collected.

value at least 60% of their uncontrolled value, meaning that even
the lowest-valued users experience moderate degredation of ex-
perience. Nonetheless, the top quartile of users experience user
value increases of over 80%, allowing for significant improvements
in total user value. Figure 29 shows the results using the ISP B
(430Mbps) trace.
Fast Convergence. In Figure 14(c), we compared FlowTele with
an approach that uses MulCubic [45] to enforce the bandwidth
allocations given by vAlloc, demonstrating the fast convergence of
fShaper. In this segment, we provide an intuitive estimate about
MulCubic’s convergence time to analytically support this experi-
mental result. The expected cwnd of TCP Cubic is

E{cwnd𝑐𝑢𝑏𝑖𝑐 } =
(

3 + 𝛽
4(1 − 𝛽)

) 1
4
(
RTT
𝑝

) 3
4
,

where 𝑝 is loss probability. MulCubic assumes a deterministic loss
model where the number of packets between two successive packet
losses is always 1

𝑝 . MulCubic adjusts 𝛽 to reach the target cwnd.
Suppose it takes on average 𝑛 packet losses to converge to the
target cwnd, then the total time of convergence is𝑇𝑡𝑜𝑡𝑎𝑙 =

𝑛∗𝑝∗1500
𝐵

(for MTU-sized packet), where 𝐵 is the available bandwidth. Take
𝑛 = 1, 𝑝 = 1000 (loss rate 1𝑒−3), 𝐵 = 2Mbps, we have 𝑇𝑡𝑜𝑡𝑎𝑙 = 6
seconds. However, fShaper directly overwrites and fixes the cwnd,
which converges in one RTT (10–30ms). Thus, enforcing vAlloc
decisions using fShaper delivers high performance gain.

E CUSTOMIZING USER MODEL IN VALLOC
In this section, we describe a method for content providers to learn
their per-user models from a base model such as the one we use in
§ 3.2. At a very high level, our method enables a content provider
to learn a shifted version of the base-model 𝑝wl that is most aligned
with the user history collected by the provider. Towards this end,
we formulate the following optimization problem to determine the
most desirable shift amount 𝑥 :

min
𝑥
− log

(∏
buf

(𝑝buf + 𝑥)Leavebuf

(1 − 𝑝buf − 𝑥)TotalTimebuf
)

where 𝑝buf is the 𝑝wl for the given (bitrate, buffer) in the base model.
Since we consider the 𝑝wl curve for every bitrate as being indepen-
dent, we solve the above optimization problem for one fixed bitrate
in one training round, and repeat the process for every bitrate. In
one training round, for every (bitrate, buf) configuration, we count
how many seconds a user spent watching with the configuration
during a long period of time (we use 180 simulated hours in our
experiments). Each time the user leaves, we record the latest con-
figuration. Then we count the total watch time (TotalTimebuf) and
total number of leaves (Leavebuf). Thus, the optimization is to find a
shifted 𝑝wl curve such that the probability of observing such watching
history is maximized. We clarify that the content providers can
execute the optimization either on a per-user basis or in aggregate,
allowing the providers to customize user models on different-sized
subsets of users.

To avoid getting trapped in local optimum, where a partially-
incorrect model results in repeated choices of a suboptimal reso-
lution, we further design an exploration mechanism. Specifically,
each time we obtain a new 𝑝wl model, we will also determine a
bitrate that needs to be explored during the next training round.
One exploration session is a short internal we insert in a training
round using a specific bitrate different from the bitrate used in the
training round, which would otherwise be the one chosen by vAlloc.
The exploration bitrate value is chosen to maximize the following
distance:

distance =
∑︁
buf

𝑝buf − 𝑝buf√︃
𝑝buf (1−𝑝buf)

𝑛

where 𝑝buf and 𝑝buf are the shifted 𝑝wl model in the current and
previous training round, and 𝑛 is the number of samples from the
curve. A large distance means that the two consecutive 𝑝wl models
have significant differences, indicating that our training may be
stuck between two local optima. To gather the data necessary to
break out of these local optima, we force the next optimization
round to use the exploration bitrate.

25 50 75 100 125 150 175 200
Average Bottleneck Bandwidth Shared by 12 Users (Mbps)

400

500

600

700

A
ve

ra
g

e
 T

o
ta

l
V

a
lu

e

Average Total Value of One Hour Simulation v.s. Average Bottleneck Bandwidth

Base Model
Ground Truth Model
Shifted Model after 360 hours
Shifted Model after 720 hours
Shifted Model after 2700 hours

Figure 32: The total user value for customized user model. By exe-
cuting the optimization process, the content providers can gradually
approach the “unknown” ground truth even starting from a “bad”
base user model.

We evaluate the effectiveness of our method by showing that
even if a content provider starts with a user model that is very far
from the ground-truth model, the content provider can gradually
improve its user model. Specifically, we create several example
ground truth models by randomly shifting the base 𝑝wl curve and
then scaling it with a factor chosen from Uniform(0.9, 1.1). Then
we run our optimization process for multiple training rounds and
collect the total user value for several shifted 𝑝wl models. The re-
sults are plotted in Figure 32. Our results show that as we learn
more about each user, the total user value for the customized user

CoNEXT ’22, December 6–9, 2022, Roma, Italy Bo-Rong Chen, Zhuotao Liu, et al.

0 20 40 60 80 100 120
User ID

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

A
d

ve
rt

is
in

g
 V

a
lu

e

From Top 5 Associated AdWords

Original
Fitted

0 20 40 60 80 100 120
User ID

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

A
d

ve
rt

is
in

g
 V

a
lu

e

From Top 10 Associated AdWords

Original
Fitted

0 20 40 60 80 100 120
User ID

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

A
d

ve
rt

is
in

g
 V

a
lu

e

From Top 20 Associated AdWords

Original
Fitted

0 20 40 60 80 100 120
User ID

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

A
d

ve
rt

is
in

g
 V

a
lu

e

From All Associated AdWords

Original
Fitted

(a) Fitting using quadratic distributions.

0 20 40 60 80 100 120
User ID

0.005

0.010

0.015

0.020

A
d

ve
rt

is
in

g
 V

a
lu

e

From Top 5 Associated AdWords

Original
Fitted

0 20 40 60 80 100 120
User ID

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

A
d

ve
rt

is
in

g
 V

a
lu

e

From Top 10 Associated AdWords

Original
Fitted

0 20 40 60 80 100 120
User ID

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

A
d

ve
rt

is
in

g
 V

a
lu

e

From Top 20 Associated AdWords

Original
Fitted

0 20 40 60 80 100 120
User ID

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

A
d

ve
rt

is
in

g
 V

a
lu

e

From All Associated AdWords

Original
Fitted

(b) Fitting using exponential distributions.

Figure 31: Fitting results for the value distributions of our user profiles synthesized based on the Facebook and Google datasets. Overall, the
quadratic fitting shows the best coefficient of determination for this dataset.

model gradually approaches the ground truth. We are able to re-
cover 91.4% of the optimal value (i.e., using the ground truth model)
after 720 simulated hours, which improves to be 94.0% after 2700
simulated hours. More crucially, our method works better in the
lower bandwidth region where vAlloc is likely to show the most im-
provement. When the average bottleneck is about 40% of “threshold
value” (where increasing bandwidth will not improve total value),
our method achieves 98.6% and 99.9% of the optimal user value,
after 720 and 2700 simulated hours, respectively. Thus, even if a
content provider starts with a base model that is inconsistent with
its actual user base, it can still gradually converge the true model
by analyzing user watching histories.

F USER VALUE DISTRIBUTION STUDY
This section presents additional results on user value distributions
omitted from the body of the paper due to space constraints. Fig-
ure 30 shows the value distributions of Google AdWords we col-
lected in nine additional cites. Figure 31 plots the quadratic and
exponential fitting results for our synthesized user profiles based on
Facebook and Google datasets for different advertising strategies.

The quadratic fitting shows the best coefficient of determination
for this dataset, so we use it as one of our representative value
distributions for vAlloc and integrated evaluation.

G PUBLIC POLICY IMPLICATIONS
Beyond the scope of this paper are any public policy implications;
for example, the application of ordinary corporate income tax, or a
specially-designed traffic-shaping tax, could provide for a socially-
equitable distribution of the additional profits attributable to these
shaping techniques. In particular, if high-quality video delivery is
generally reduced in one group and increased in a second group,
the proceeds of a traffic-shaping tax can provide benefits to the
first group that are, from their perspective, even more meaningful
than an equal probability of high-quality video delivery, such as
reduced Internet prices or increased community services, thus mak-
ing revenue-based shaping a win-win for all groups of consumers.
This paper focuses on the network mechanisms that can enable an
ecosystem combining technical approaches, policy decisions, and
social programs that enable these mutually beneficial outcomes.

	Abstract
	1 Introduction
	2 Architecture
	3 vAlloc Design
	3.1 vAlloc Ad Revenue Exploration
	3.2 User Behavior Modeling
	3.3 Bandwidth Allocation Algorithm
	3.4 Standalone vAlloc Evaluations

	4 qAlloc Design
	4.1 Video Streaming and QoE Model
	4.2 QoE Optimization Problem

	5 fShaper Design
	5.1 Design Detail
	5.2 Standalone fShaper Evaluations

	6 Evaluation
	6.1 Integration Evaluation
	6.2 Comparison with Current Practices
	6.3 Co-Bottleneck Detection

	7 Ethical Considerations
	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A qAlloc Solver
	B Detailed Designs Choices in fShaper
	B.1 fShaper Parameters
	B.2 fAllocator with Discrete Video Rates
	B.3 fAllocator for Video with Calibrator Flows

	C Standalone Evaluations
	C.1 Standalone qAlloc Evaluations
	C.2 Standalone fShaper Evaluations

	D Integrated Evaluations
	D.1 Q-FlowTele Evaluations
	D.2 Additional Evaluations for V-FlowTele

	E Customizing User Model in vAlloc
	F User Value Distribution Study
	G Public Policy Implications

