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Abstract—Digital Contact Tracing (DCT) has been proposed to
limit the spread of COVID-19, allowing for targeted quarantine of
close contacts. The protocol is designed to be lightweight, broad-
casting limited-time tokens over Bluetooth Low Energy (BLE)
beacons, allowing receivers to record contacts pseudonymously.
However, currently proposed protocols have vulnerabilities that
permit an adversary to perform massive surveillance or cause
significant numbers of false-positive alerts. In this paper, we
present AcousticMask, which encrypts broadcast messages us-
ing a key derived from the audio signal present at each device with
sufficient security levels. Our results show that a receiver sharing
the same social space as a sender will hear all of the sender’s
ephemeral IDs (EphIDs) with Hamming distance at most 3, which
can be decrypted at the rate of 10 Hz on a Raspberry Pi 4, while
achieving a security factor of over 2108 against attackers in our
testing set, showing AcousticMask is lightweight for DCT and
provides sufficient security levels to protect user’s privacy.

I. INTRODUCTION

The recent outbreak of COVID-19 makes DCT attractive
due to the possibility of replacing cumbersome manual con-
tact tracing. Because of location privacy concerns, existing
methods [3], [5], [9], [24] exchange temporary tokens, i.e.,
EphIDs, between users via BLE; these temporary tokens are
designed so that two tokens used by the same user should be
cryptographically unlinkable.

However, BLE-based DCT faces three issues. First, using
EphIDs is not untrackable. Currently proposed plaintext EphID
transmission potentially allows a receiver to use Radio Fre-
quency (RF) tracking (e.g., [4]) combined with human motion
modeling [8], [10], [17] to track a user’s physical movement
across multiple transmissions of the same token; the speed
and direction of travel could potentially be used to link a
user across token changes, which we call tracking attack.
Second, since the transmission range of RF signals is typically
larger than the transmission distance for most diseases (6 feet
or 1.8 meters), hearing an RF transmission is not a good
proxy for being within the transmissibility region of a diseased
individual. Finally, when an attacker can receive tokens from
well outside social distance, that attacker has a wider range
of tokens to replay. For privacy reasons, token broadcast is
usually not location-constrained, allowing an attacker to use
the same token across a wide geographical area, or to replay
another users’ token in the same way. We call this attack the
identifier-spoofing attack.

These three vulnerabilities can be exploited by an adver-
sary that covers a sufficiently large geographical region; the
adversary can deploy several nodes (similar to the number
of WiFi access points needed to cover a similar area), to
perform massive surveillance or cause significant numbers of
false-positive alerts by DCT. This can be addressed with the
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Fig. 1: AcousticMask provides much better effort asymmetry be-
tween users and attackers than Schürmann et al. [21] and traditional
ML models.
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single primitive of authenticating physical proximity, but the
existing co-location authentications are neither for broadcast
communications [11], [14]–[16], [25] nor lightweight [21],
sufficient for DCT, with practical security level.

In this paper, we present AcousticMask, a framework for
securing information exchange with security guarantees, to
address these issues. At a high level, AcousticMask aims to
maximize the work needed to correct an attacker-key into a
user-key, while ensuring the users have similar keys. The user-
key is then used in encryption to reduce the ability of the out-
of-space attacker to perform both tracking attack and identifier-
spoofing attack. Fig. 1 shows that the best published approach,
proposed by Schürmann et al. [21], does not allow users to
have similar keys, whereas traditional Machine Learning (ML)
models [12], [27] do not create sufficient effort asymmetry
between users and attackers.
Contributions. We present a framework for securing infor-
mation exchange with security guarantees, which enhances
the user’s privacy for current BLE-based plaintext DCT with-
out using any network overhead for key exchange. In our
evaluations using real and synthetic data, all adjacent (within
1.5 meters) users can receive an EphID encrypted with a key
at a Hamming distance of at most 3, while achieving a secu-
rity factor of 2108.6–2118.4 against non-adjacent users in our
testing set. Furthermore, AcousticMask produces reasonable
performance directly on real-world data, despite being trained
only on datasets created in controlled environments. This
demonstrates the generalization capability of AcousticMask
without the usage of real-world data at the training stage.

The overall structure of this paper is as follows: we make
our system assumptions and the threat model in Sec. II. We
present AcousticMask in Sec. III. Sec. IV discusses our
evaluation; in Sec. V, we perform security analysis. We make978-1-6654-3540-6/22/$31.00 © 2022 IEEE



our conclusion in Sec. VI.

II. THREAT MODEL AND ASSUMPTION

Threat Model. Our work is based on the idea that building
a global audio adversary is significantly more difficult than
building a global RF adversary. Because building users typi-
cally value sound insulation more highly than RF insulation
(in fact, RF insulation can be a negative because of its impact
on cellular service), it is common for buildings to provide
much less RF attenuation than audio attenuation; for example,
50 dB audio attenuation is common for buildings, while 50 dB
RF attenuation would likely create gaps in cellular coverage.
As a result, building a global RF adversary requires many
fewer listening points. Hence, we assume an adversary that
does not have global acoustic coverage, either as a sender or
a receiver. An attacker in our model can distribute hundreds or
even thousands of listening devices or loudspeakers throughout
a city, and will be considered to be part of those social spaces,
but since our social spaces are small, each listening device will
compromise privacy only over a few square meters, and a loud-
speaker that is not obnoxiously loud will likewise compromise
privacy only over a few square meters. We assume the attacker
can use a powerful antenna to increase transmission range and
signal strength. The attacker can eavesdrop on the wireless
channel from different social spaces. In addition, the attacker
can survey public spaces to obtain an acoustic signature, but
the attacker should not be considered to be in the same social
space if that survey occurs at a different time.

Because we assume that the adversary is not global, we
allow any user within the social space to receive EphIDs,
relying on the adversary’s blind-spots to provide privacy
through protocols that switch EphIDs. We also assume that
the user’s phone is not compromised (otherwise location can
be accessed directly), so an attacker that can continuously
play sounds through the victim’s phone [23], or listen to their
microphone are not part of our threat model.

We do not mean to say that an attacker that can ever
hear a user’s phone or play a sound through a user’s phone
can compromise the user’s privacy. Rather, our mechanism
is designed to ensure that reasonably-constrained attackers
cannot deploy a global adversary that allows tracking from
EphID to EphID. Once the attacker loses contact with the
victim across one EphID change, the attacker can no longer
definitively track one EphID to the next. Because a gap in
coverage breaks the chain of locations. The goal of the attacker
is to track users by continuously eavesdropping to violate
users’ privacy, or spoof the physical proximity with EphIDs
of positive cases, causing users to get alerts by DCT.
System Assumptions. Each device is loosely time synchro-
nized, such as through the Network Time Protocol (NTP). In
addition, packets are transmitted wirelessly, such as over BLE.
Packets might be dropped, but the same information will be
transmitted multiple times, allowing acceptable performance
for solutions that find keys on the scale of minutes. We assume
our protocol runs under rich ambient audio environments, and
must work in indoor environments, since indoor contagion [22]
is more severe in COVID-19.
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Fig. 2: (a) System architecture (b) KeyGeneration is trained in-
cluding reconstruction loss (Lrec), quantization loss (Lqnt) and
discriminative loss (Ldis). During the binarization process, STE is
used to directly copy gradients in backpropagation.

III. PROPOSED APPROACH

A. AcousticMask Overview

To mitigate attacks that spread EphIDs to create false
positives for contacts and enhance user’s privacy that pre-
vents attackers from tracking users due to repeated EphID
transmissions, we propose AcousticMask, which encrypts
EphID transmissions using AcousticKeys (AKs) generated by
KeyGeneration. Because neighboring devices will generate
slightly different AcousticKeys, we develop KeySeek, which
searches for and validates keys used for DCT. AcousticMask
provides three advantages: (i) it reduces the effectiveness of an
attacker that sends long-range contact tracing messages using
BLE with powerful antennas; (ii) it provides more precise
social-space estimates, especially in the presence of protective
shields, and (iii) it decreases the attacker’s ability to collect and
spread large numbers of EphIDs using only Bluetooth devices.
Fig. 2a illustrates our system architecture.

B. KeyGeneration Design

Binary Key Generative Model. KeyGeneration is an AE-
based binary key generative model for audio hashing (Fig. 2b).
The encoder of the AE model is formed with a series of con-
volutional layers followed by a fully connected layer. The first
and second convolutional layers consist of 4 kernels of size
4×4, and the third and last convolutional layers have 8 kernels
of size 4×4; the dilation rates are 1, 4, 16 and 64 for these four
layers, respectively. Batch normalization and ReLU are placed
after each layer except for the last fully connected layer, where
a hard-tanh activation function is used instead. The hard-tanh
function is defined as: hard-tanh (x) = max(min(x, 1),−1).

After passing through the last hard-tanh layer, a one-
dimensional vector, h, is obtained. A threshold value of 0
is applied on h to obtain a binary vector q, with element
values either -1 (when the value of the original element is



smaller than the threshold) or 1 (when the value of the original
element is greater than the threshold). We choose the values
of binary codes to be {-1,1} instead of {0,1} to facilitate an
easier training process, which will be described below. The
decoder of AE with the binary vector q as the input then passed
through a fully connected layer along with batch normalization
and ReLU, followed by a series of deconvolutional layers
symmetric to the convolutional ones in the encoder. Finally,
the reconstructed data is obtained at the output. The encoder
and decoder are jointly trained with a reconstruction loss,
denoted as Lrec, which minimizes the l1 distance between the
input and the output of the AE model. During training, since
the binarization process is a non-differentiable estimation, the
straight-through estimator (STE) [6] is utilized to copy the
gradient of q directly to h on backward-pass and disregards
the non-differentiable portion [20]. In order to reduce the
error caused by the STE, quantization loss Lqnt is applied
to minimize the l2 loss between h and q. In addition, when
performing key generations, we then change the value from {-
1,1} to {0,1} to facilitate the Hamming distance computation.

To further improve performance, a discriminative loss Ldis

is introduced to increase the separation between positive
(contact) and negative samples. Here, we apply the cosine
similarity in calculating Ldis, which is formulated as:

Ldis = −Ei

{
log

exp(sim(qi,q
+
i ))

exp(sim(qi,q
+
i ))+

∑
exp(sim(qi,q

−
i ))

}
(1)

where sim is the cosine similarity, qi is the binary code of
the i-th microphone; q+i and q−i denote the positive sample
(contact) and negative samples of the i-th microphone, re-
spectively. Here, q−i includes the binary codes of non-contact
microphones during the same time interval and the binary code
of i-th microphone itself at other time intervals.
Objective Function for Security Level. From Eq. 1, by
optimizing Ldis, we accordingly increase the separation be-
tween sim(qi, q

+
i ) and sim(qi, q

−
i ). As a result, Ldis aims to

encourage the Hamming distance between all positive pairs
to converge to 0 and the Hamming distance between negative
pairs to converge to K. For a pattern recognition task, a clear
separation between positive and negative samples is considered
a desirable property. For an encryption task, on the other hand,
an excessive separation may not be ideal. With a Hamming
distance very close to K, an attacker can find the victim’s
key simply by inverting its own key. To alleviate this potential
risk, we modify Ldis to specify the Hamming distance between
negative pairs to be close to K

2 (instead of K, since
(
K
K

)
= 20,

but
(
K
K
2

)
≈ 2K). The modified Ldis is:

Ldis = −Ei

{
log

exp(sim(qi,q
+
i ))

exp(sim(qi,q
+
i ))+

∑
exp(|sim(qi,q

−
i )|)

}
(2)

where the Hamming distance between qi and q−i is close
to K

2 when argmin(|sim(qi, q
−
i )|). This modification makes

KeyGeneration create sufficient security levels between pos-
itive and negative examples, thus allowing AcousticMask to
provide security guarantees against the out-of-space attacker.

Besides, to further emphasize positive pairs, Lpos is in-
troduced to measure the distance of the two positive binary
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Fig. 3: BLE beacon format.
Fields Definition Purpose

IV (1 byte) Initialization Vector encrypted EphIDs that change from packet to packet
EphID (16 bytes) C0 := SKi0 ⊕ EphID encrypted EphID

Auth (4 bytes)
C1 := SKi1 [0 : 9]⊕ (Auth||RC)

TESLA [19] authenticator defined by BlindSignedID [7]
RC (5 bytes) special encryption scheme [18], where RC := C0[0 : 5]

TABLE I: KeySeek design details, where StreamKeys SKi are
generated by AcousticKeys from KeyGeneration.

vectors by: Lpos = 1 − sim(qi, q
+
i ). Finally, the overall

objective function is a summation of four losses is: L =
Lrec + Lqnt + Ldis + λLpos, where λ is the weight for
determining the magnitude of the Lpos.

C. KeySeek Design
We propose KeySeek to allow the receiver to find the

AcousticKey used by the broadcaster. Since BLE beacons
are limited to 31 bytes [1], we design the AcousticMask
payload as shown in Fig. 3. During period t, both broadcaster
and receiver record an audio clip and use KeyGeneration
to generate their AcousticKeys, AKb and AKr, respec-
tively. The broadcaster then uses a 1-byte IV together
with her AcousticKey AKb, using a counter PRG with
AES-128 counter mode to encrypt 2 blocks, which oper-
ate as StreamKeys SKi: SKi0 ||SKi1 := PRG(IV ) :=
AESAKi(IV, ctr)||AESAKi(IV, ctr + 1), where i = b, to
encrypts EphID, Auth, and RC as C0 and C1. We summarize
each field in Table I, where the 1-byte IV is changed each
packet to ensure that SK values are not duplicated between
packets, thus removing that source of trackability. When the
receiver receives the message, she first generates a set of
candidate keys, starting from her AcousticKey AKr, then by
flipping a single bit of AKr, increasing the number of flipped
bits up to a threshold T . If the decrypted RC field matches
the first 5 bytes of the C0, she has found the sending key AKb.

IV. EVALUATION

A. Qualification Metrics

Security Level. We define two Hamming distances: duser
and datk, where duser is the upper bound that a user can
decrypt due to computational limitations on mobile devices
(duser = 3 works for most mobile devices and is sufficient
for DCT according to our testing), and datk is the Hamming
distance between the user’s AcousticKey and the AcousticKeys
obtained by attackers. We define the probability (Puser and
Patk) of obtaining AcousticKeys below duser and datk by
users and attackers, respectively. To interpret the perfor-
mance of KeyGeneration, we define baseline requirements
as follows: for each EphID’s 5-minute broadcast interval,
we have 30 AcousticKeys (10-second for an AcousticKey).
Our goal is that a user in the same social space gets at
least 1 AcousticKey within Hamming distance duser with
probability at least 99%; this requires that each AcousticKey
have a probability Puser ≥ 0.1424. This baseline is acceptable,
since Centers for Disease Control and Prevention (CDC) [2]
defines close contact in contact tracing as: it is someone who



Recording Scenarios Type Room 1 (4.88×3.7×2.7 meters3) Room 2 (9.97×6.68×2.7 meters3)
S1 Real (Sp1, N1) (Sp2, N2)
S2 Real (Sp1, N1) (Sp3, speech)
S3 Synthetic (Sp1, N1) (Sp2, N2),(Sp3, speech)
S4 Synthetic (Sp1, N1) (Sp2, N2),(Sp3, speech)
S5 Synthetic (Sp1, N1) (Sp2, N2),(Sp3, speech)

TABLE II: Datasets used in evaluations, where N1 and N2 are
different noise types. (Spi,Signali) donates Spi played Signali.

was within 6 feet of an infected person for a cumulative total
of 15 minutes or more over a 24-hour period. AcousticMask
broadcasts each EphID for 5 minutes as a broadcasting interval
for each EphID, so getting at least 1 AcousticKey within the
5-minute broadcasting interval to have the EphID satisfies the
definition. At the same time, an attacker from a different social
space should not be able to acquire 2 AcousticKeys within
Hamming distance datk; that is, Patk ≤ 0.0149. We allow an
attacker to find a single AcousticKey because a single EphID
broadcast gives no information to the attacker; the EphID and
corresponding authenticator are designed to leak no identity
information, and all identity risk comes from the repetition
of the same EphID. For spoofing, the attacker has even more
significant difficulty due to the small search space explored by
legitimate devices and the relatively low message rate allowed
by BLE.
EphID Delivery Rate. To enhance user’s privacy without
degrading the performance of DCT, we need to consider
EphID delivery rate (REphID): during the broadcasting interval,
what proportion of EphIDs are delivered to users within the
same social space. We aim for a delivery rate of almost
100%. As a result, the goal of AcousticMask is to achieve
Puser over at least the probability of 0.1424 to have the keys
within Hamming distance of 3, which we call d1 group, and
maximizes the Hamming distance of datk that corresponds to
Patk below the probability of 0.0149, which we call d2 group.
Table III summarizes the baseline metrics.

B. AcousticMask Evaluations

Dataset Collection. Our audio recordings were made in two
meeting rooms side by side. Six microphones (M1-M6) of the
same brand (AKG P420) were placed at two positions (M1,
M2) in room 1 and four positions (M1-M4) in room 2. Each
microphone has one other microphone placed 1.5 meters away
in the same room. There were three speakers; one speaker
(Sp1) was placed in room 1 and another two speakers (Sp2,
Sp3) were placed in room 2.

We prepared two datasets to evaluate the proposed system:
real and simulated datasets, which we list in Table II. S1
and S2 were real datasets containing noise and/or speech
signals, whereas S3–S5 were generated by N2 and speech
signals at three SNR levels: 0, 10 and 50 dB. The contents
of speech signals for Sp3 were from the Taiwan Mandarin
Hearing in Noise Test (TMHINT) sentences [13]. This dataset
includes recorded speech utterances of eight speakers (four
male and four female), with each speaker pronouncing 320
utterances. There was no overlap between the training and
testing language-speakers and speech contents. The noise
signals were obtained from the 100 noises dataset [26]. For N1
and N2, we selected 20 noise types for each during training.

Recording
Scenarios

Performance Metrics
Puser{d1 ≤ duser = 3} datk Security Factor REphID (%)

S1 (Noise, real) 0.2222 38 2108.6 100%
S2 (Noise+Speech, real) 0.7111 48 2118.4 100%
S3 (SNR 0 dB, synthetic) 0.5444 47 2117.6 100%
S4 (SNR 10 dB, synthetic) 0.6722 47 2117.6 100%
S5 (SNR 50 dB, synthetic) 0.7056 48 2118.4 100%

Baseline ≥ 0.1424
Patk{d2 ≤ datk} - ≈ 100%≤ 0.0149

Library 0.2083 9 244.12 100%
Office 0.0083 18 271.63 0%

Laboratory 0.2117 12 254.40 100%
Restaurant 0.2929 10 247.69 100%

Train 0.2028 8 240.38 91.67%
Conference Room-1 0.2944 13 257.55 100%
Conference Room-2 0.6583 12 254.40 100%

Game Room 0.4583 13 257.55 100%
Karaoke 0.2708 12 254.40 100%

TABLE III: Performance in testing set (S1–S5) and real-world.
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Fig. 4: Evaluation results of S1.

Since we intend to test performance under unseen noise types,
we selected another 10 noise types for each during testing,
and there is no overlap between the training and testing noise
types. Recordings were done with a sampling frequency of
48 kHz. Each scenario had 90 minutes data for training and
10 minutes for testing.
Preprocessing. For any audio signal from the six micro-
phones, we first cut each set of signals into segments of
10 seconds and then downsampled to 8 kHz. Time-frequency
features were extracted for each data using a 512-point short
time Fourier transform (STFT) with a Hamming window size
of 64 milliseconds and a hop size of 32 milliseconds. This
resulted in a generated 257-point STFT log-power spectra
feature vector. The feature vector was normalized with range
of 0 to 1 using min-max normalization and used as the input
to the AE model.
Controlled Environments. Table III shows the results of all
the scenarios (S1–S5) in the testing set, where Puser{d1 ≤
duser = 3} and datk, which corresponds to Patk{d2 ≤
datk} ≤ 0.0149, were reported for performance compari-
son. In all scenarios, the results of Puser outperformed the
baseline, which suggests the users can acquire more than
1 AcousticKey in 30 chances with high probability. In addition,
KeyGeneration keeps datk above 38, and this shows that the
attacker rarely has AcousticKeys within Hamming distance 38.
Even when the attacker gets one AcousticKey, she still needs
to break another AcousticKey from the same sender and the
same EphID to gain any privacy-compromising information,
and even then, the leakage is only two locations that are known
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Fig. 5: (a)-(d): (·,·) is (Puser, datk), compared with Schürmann et al. [21]; (e)-(h): REphID for varying thresholds T .

to be the same individual. Fig. 4a and 5a–5d show the results
of scenarios S1–S5. We compare against the audio fingerprint
proposed by Schürmann et al. [21], which uses 9 frequency
bands to obtain a 128 bit fingerprint. The figure shows that
each scenario, 22.22%, 71.11%, 54.44%, 67.22%, and 70.56%
of Hamming distances were within 3. This indicated that for
pairing codes, our model created AcousticKeys with Hamming
distance strongly concentrated below 3. We can also observe
that in our five scenarios, datk were 38, 48, 47, 47, and
48, showing a good separation of d1 and d2. As a result,
AcousticMask outperformed Schürmann et al.’s method in
terms of feasibility of d1 and security levels in the testing set.

Meanwhile, the largest Hamming distances achieved are
around 96, 97, 98, 97 and 97 for scenarios S1–S5, respec-
tively, showing that modifying Ldis in Eq. 2 successfully
prevented the Hamming distance from converging to K = 128,
and demonstrating that searching around the inverse of the
attacker’s key is not significantly more efficient than a brute-
force search of the entire key space (since

(
128
98

)
≈ 296.9).

Threshold T and REphID. We evaluated the threshold of
KeySeek using a Nexus 5X and a Raspberry Pi 4 to
broadcast BLE beacons at 10 Hz. The receiver accepted
only successfully-decrypted beacons, and buffered the most
recent incoming beacon during the decryption. We split the
AcousticKeys from the 10 minutes testing set into 2 5-
minute blocks, since BlindSignedID [7] uses each EphID
for 5 minutes. We set the threshold T to 3 because the
computational limitations on the Raspberry Pi 4 make recov-
ering from 4 errors infeasible. During these 5-minute slots,
the EphID was received, since only one beacon needs to be
successfully decrypted, as shown in Fig. 4b and 5e–5h, where
the EphID delivered rate reaches 100% within 110.46 seconds
with Hamming distance 3, whereas the attacker with different
capabilities of breaking keys had REphID of 0%. All scenarios,
S1–S5, have the EphID of 100%, as shown in Table III. This
means AcousticMask can still be used effectively on DCT
while enhancing users’ privacy.
AcousticMask in Real World. We further evaluated
AcousticMask by the recordings in the real environments
from 4 mobile phones, including a pair of iPhone 12 and
two heterogeneous Android phones. We placed each pair

of phones within the same social space, and recorded each
scenario for about 1 hour. The scenarios included library,
office, laboratory, restaurant, train, conference rooms, game
room, and karaoke. The range of loudness was from 34–
75 dB, which included most noise levels excluding harmful
levels. Since we did not have negative cases, we chose the first
key of each scenario as the attacker’s key. Table III reported
the performance AcousticMask in all real-world scenarios.
For all scenarios having REphID of 100%, AcousticMask has
Puser over the baseline and datk from 9–13, which corre-
sponds to a security factor of 244.1–257.5. The results first
show that KeyGeneration produces reasonable performance
directly on real-world data, despite being trained only on
the original datasets, thus demonstrating the generalizability
of KeyGeneration without the usage of real-world data at
the training stage. In addition, for the attacker, privacy com-
promise still difficult, because she needs to break at least
2 AcousticKeys, each with Hamming distance over 9, and
because she cannot determine which packets belong to which
user, she must perform between 244.1–257.5 key explorations
per packet. We found AcousticMask did not perform well in
the office scenario, because we put phones in a silent, empty
office. The train scenario was likewise sometimes quiet due
to the train’s maglev operation and the cultural expectation of
silence on the train, leaving little audio signal to create similar
keys at each site.

V. DISCUSSION

In this section, we perform analysis of AcousticMask and
discuss the limitations of our system.
Security Analysis. Several existing methods [3], [5], [9], [24]
neither mitigate Denial-of-Service attack nor prevent from
identifier-spoofing attack. An attacker can easily send a large
amount of fake EphIDs to consume users’ phone storage, or
replay valid packets with the high power antenna. To our
knowledge, only BlindSignedID [7] prevents such attacks by
only accepting EphIDs with a valid authenticator. However,
it still uses plaintext BLE transmissions, so users can be
tracked by the attacker. AcousticMask extends this work by
using ambient audio to derive an encryption key, preventing
malicious users in different social space (i.e., those who cannot



access to the common ambient audio) from claiming the
physical proximity and from tracking users.
Privacy Analysis. The current methods [3], [5], [9], [24]
provide no privacy in terms of trackability among adjacent
transmission packets. The EphIDs are the same across packets
during the same operating time slot. Through human mobility
prediction and RF tracking, the attacker can still potentially
track the user’s location and violate her privacy. However,
AcousticMask has 28 IVs per AcousticKey, and each IV
is used at most once per AcousticKey in a 10-second slot.
This allows AcousticMask to send 4–10 packets per second
(128 IVs > 100 packets in 10 seconds at 10 Hz) while ensuring
that each encrypted packet is distinct. As a result, attackers that
cannot decrypt the messages cannot use header information to
track users, thereby enhancing the user’s privacy.
Without Access to Audio. Mobile phones often already listen
continuously to support applications such as Google Assistant
and Siri. To further protect users’ privacy, AcousticMask
KeyGeneration can be made into an OS-level API, so that
DCT applications need not access privacy-sensitive audio data.
For example, Google Assistant and Siri already have APIs for
extending their functionality to cover third-party applications.
Quiet Environments. Table III shows that AcousticMask
offers a lower security factor in the library scenario, where
the loudness was around 34.1–36.4 dB. Most sounds were
whispers, and noise from outside traffic and indoor equipment,
such as fans, did not vary sufficiently over time. Although
AcousticMask achieved REphID of 100%, it did not provide
a large datk. However, we consider the loss of privacy in
quiet environments to be an acceptable trade-off, since quiet
environments tend to be sparsely populated and tend to lack
motion, so mere presence provides significant tracking cues
even if the encryption is perfect. In the office environment
(44.8–44.9 dB), AcousticMask could not generate common
AcousticKeys, because KeyGeneration relies on rich audio
signals to generate AcousticKeys, which does not work in
a silent environment; however, DCT is unnecessary in such
environments due to a lack of social activity.

VI. CONCLUSION

In this paper, we presented AcousticMask, which explores
an AE-based key generative model for generating common
keys through audio at each device; these keys can then be
used for encryption. Though two nearby devices may not
immediately share the same key, over time they will likely have
a pair of keys that differ in only a small number of bits, and a
receiver can determine a sender’s key by searching nearby
keys. Moreover, in any 10 second time period of our test
set, our model has a 22.22–71.11% probability of acquiring
common keys within Hamming distance 3; over the 300-
second duration of an EphID, all adjacent (within 1.5 meters)
users can receive an EphID with Hamming distance at most 3
at the rate of 10 Hz, while achieving a security factor of
over 2108.6 against non-adjacent users in our testing set.
Finally, AcousticMask can produce reasonable performance
directly on real-world data, despite being trained only on the
original datasets, thus demonstrating the generalizability of

AcousticMask without the usage of real-world data at the
training stage. Our framework can both authenticate physical
proximity to prevent from identifier-spoofing attack, and en-
hance user’s privacy by encrypting BLE beacons.
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