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Abstract—Anomaly detection has been applied to diverse
critical applications or systems since anomalous behaviors could
lead to fatal situations during the operation. In intelligent trans-
portation systems, anomaly detection also plays an important
role by allowing the system administrator to assess the imminent
emergence of any incidents. In this paper, we address real-time
anomaly detection that has not yet been thoroughly explored
in railway system. We propose an online anomaly detection
scheme in train speed form railway systems using machine
learning approaches. We adopt the Bayesian statistical learning
model to represent normal behavior of train speed changes and
detect the anomaly based on the occurrence probability of each
speed change observation. While the Bayesian statistical learning
model can detect sudden speed changes, it may not be able to
detect malicious behavior of an intelligent attacker who gradually
reduces or increases the train speed to cause the collision between
two subsequent trains. We thus propose a linear regression model
that takes into account time duration and travel distance from the
departure station to detect anomaly. We evaluate the proposed
scheme through comprehensive simulations. The results show
that the proposed scheme efficiently detects anomalous speed
change by accurate predictions from the learning phase and
it outperforms a baseline approach with an improvement in
sensitivity by up to 22%.

Index Terms—Anomaly detection, statistical model, railway
systems, intelligent transport systems.

I. INTRODUCTION

Anomaly detection refers to identifying patterns in data that
do not conform to expected behavior and it is required in
diverse application domains including intrusion detection for
cyber-security, fault detection in safety critical systems, etc.
Since anomalous behaviors could lead to fatal situations in
such systems, anomaly detection becomes an important area
to address failure diagnosis or potential security issues. For
example, anomalous readings from a space craft sensor could
signify a fault in some components of the space craft [1] and
an anomalous trace pattern in a computer network could mean
that a compromised computer sends out sensitive data to an
unauthorized destination [2].

In intelligent transportation systems (ITS), anomaly detec-
tion also plays very important role by allowing the system
administrator to assess the imminent emergence of any inci-
dents, i.e., detect deviations from normal situations. ITS has
been successfully implemented in communication-based train
control (CBTC) systems [3], which are one of key components
to ensure a safe and efficient operation by using various on-
board sensors. Several relevant approaches have been proposed
for the vehicular networks [4], [5], however, very few solutions
so far have been proposed for railway systems, leaving the

problem of anomaly detection in railway systems remain
challenging. In [6], the authors developed a detection system
to predict potential failures by monitoring information using
sensors positioned on the main train components. However,
this work did not address real-time detection of anomalies on
the running trains. In [7], the authors studied a data-driven
predictive maintenance system that issues an alarm whenever
an automatic door is predicted to suffer a failure. The proposed
system can work online through the evolving models using
sliding windows. Our work differs from the above works as
we consider an online detection model for train speed.

Anomaly in train speed can be caused by different factors. In
normal working conditions, an incident of a certain component
for instance, failure of speed sensor of the train, can create
abnormal acceleration or deceleration. In addition to the failure
scenarios, there are cases where an attacker may influence
measured speed to manipulate the system into a hazardous
situation. For example, after gaining unauthorized access to the
trainborne network, the attacker may stop/overspeed the train
in the middle of the track to cause the collision. Regardless of
root causes of abnormal behaviors, in this paper, we address
the problem of anomaly detection in train speed of railway sys-
tems, allowing system administrators to avoid fatal collision.
To achieve this objective, we propose an anomaly detection
scheme in railway systems. We develop a Bayesian statistical
model that represents train behavior in speed changes in
normal working conditions. Assuming that speed changes
of trains in normal working conditions follow a probability
distribution, we estimate the parameter of the probability
distribution by using the Bayesian statistical learning model.
Given a new observation of speed change captured by sensors
during operation, computing the occurrence probability of
the observation with the estimated probability distribution
allows us to detect the anomaly, i.e., smaller the value of the
occurrence probability, more anomalous the observation is.

While the Bayesian statistical learning model can detect
sudden speed changes of trains, it may not be able to detect
malicious behavior of an intelligent attacker who gradually
reduces or increases the speed of trains, creating the collision
between two subsequent trains. We thus propose a linear re-
gression model that takes into account time duration and travel
distance from the departure station. For a given time duration
after leaving the departure station, if the travel distance is not
in the safe range, it can be considered as anomaly. We use
OpenRails platform to simulate the operation of trains and
generate data sets to evaluate the performance of our proposed
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Fig. 1: Overview of anomaly detection system (ADS).

models. We evaluate the performance of the proposed scheme
through comprehensive simulations.

The rest of the paper is organized as follows. We present the
security threats and proposed model in Section II. We describe
feature extraction for anomaly detection in Section III. We
introduce our anomaly detection scheme in Section IV and
its integration in railway systems in Section V. We present
experimental results in Section VI. We discuss the related work
in Section VII before concluding the paper in Section VIII.

II. THREAT MODEL AND PROPOSED APPROACH

A. Threat Model
Anomalous behavior needs to be examined to ensure safe

railway operation of CBTC systems. Particularly, dead reck-
oning becomes the base of automatic train protection (ATP)
system by measuring the speed and position reliably. The train
determines its speed based on data from on-board sensors
such as tachometer and Doppler. However, railway vehicle
sensors suffer from insufficient measurement accuracy for
several reasons. For example, the Doppler radar is prone to
adverse weather conditions while wheel speed sensors are
not sufficiently robust against wheel slip and wheel wear. In
addition to such possible malfunction of on-board sensors,
we also consider potential security threats as another cause
of the anomalous behavior. This is because, if an attacker
gains unauthorized access to the trainborne network and
takes actions on control logic maliciously, i.e., manipulate
of multiple measured speeds, main components of onboard
CBTC subsystem become targets of attacks. The specific
scenarios of potential attacks which cause the collision are: the
attacker may stop the train through unauthorized active braking
or overspeed the train in the middle of the track and the
following/leading train is not aware of a sudden stop/overspeed
of malicious leading/following train.

B. Proposed Approach
The proposed anomaly detection system (ADS) analyzes

the deviations of parameters of real feature values from the
estimated statistical models of those values. As shown in
Fig. 1, there are mainly two stages for anomaly detection.
The first step builds the Bayesian statistical model and linear
regression model using historical log file in normal working
conditions. This step is realized on the formerly selected and
calculated features and results in the estimated parameters of
the Bayesian and linear regression model parameters. Given
a new observation, the second step is to assess the difference
between the actual value and the calculated Bayesian/linear re-
gression representation of the value. Based on this difference,
the anomaly can be detected.
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Fig. 2: Correlation between time instant and travel distance
for 15 trains between Shenzen and Taoyuan stations.

For the deployment of ADS, we consider two possible ways:
the train sends data, i.e., speed and travel distance, through
the radio-based communication link to the wayside system,
which is further connected with the central automatic train
supervision (ATS) system and thus ADS can be deployed at
ATS. Furthermore, when we consider a fully-automated CBTC
system, a zone controller, which sends individual commands
to each train under its control, uses train information to
determine limit of movement authority (LMA) for trains.
Therefore, ADS can also be deployed at zone controller to aid
LMA determination. It is worth mentioning that when ADS is
deployed at those two systems, respectively, we can address
the redundancy issue by providing an additional layer of safety.

III. FEATURE EXTRACTION

In order to detect anomalies on train movements, we need
to extract some representative features from the observed
log data. We obtain log data from the OpenRails platform1,
which is an open-source platform to simulate the train motion
according to a given timetable schedule. Based on the log
data, we observe the fact that the speed profiles of multiple
trains between stations tend to be very similar, i.e., train move-
ment consists of three operation regimes: acceleration, run
(constant speed), and deceleration. Based on this observation,
we use speed differences to capture the operation state of a
train. Specifically, given the extracted speeds of each train Ti
(1 6 i 6 N) between two measurement time instants, the
speed difference of Ti is obtained as follows:

|si(t+ u)− si(t)|, i = 1, .., N (1)

where si(t) is the speed of Ti at time instant t and u is a pre-
defined time interval between two measurements. We finally
have a training data set, X = {xi,j}, where i is the index of
the train and j is the index of the measurement. This training
set consists of the normal train speed differences during the
interested time window and it is used for learning step.

Furthermore, since trains operate according to a prede-
termined schedule from the departure to the arrival station,
we observe the fact that there is a correlation between time
duration and travel distance. As shown in Fig. 2, we observe

1OpenRails: http://www.openrails.org



that given a particular time instant, the travel distances of
all the trains who pass the same section of track are very
similar. Hence, we also consider a pair of the time and its
corresponding travel distance as another interested feature and
thus have a training set, Y = {ti,j , di,j}, where i is the index
of the train and j is the index of measurement, representing
the normal behavior of travel distance during the interested
time window and will also be used for learning step.

IV. STATISTICAL ANOMALY DETECTION

We now describe the proposed anomaly detection scheme
by introducing a statistical approach to infer the suspected
anomaly. When there is a new observation, the probability that
the estimated statistical model should generate this observation
is calculated. The new observation is considered anomalous if
it is improbable to occur in that model, i.e., its occurence
probability is smaller than a pre-defined anomaly threshold.

A. Anomaly definition
Assuming that samples from the normal situation are gen-

erated by a known probability density P (x|θ) for a set of
parameters θ, the smaller the probability of generating a new
observation from the distribution, the more anomalous is it.
To define how unusual a new observation z is, we represent
the probability of generating a more common sample than z
from the distribution as:

A(z|θ) =

∫
x∈Ω

P (x|θ)dx (2)

where Ω = {x : P (x|θ) > P (z|θ)}.
There are several desirable properties of A(z|θ). First,

A(z|θ) increases when z is more anomalous. Second, it is
comparable to the anomaly of other distributions or sets of
parameters. Third, it is directly connected to the rate of false
alarms. If we set a threshold on A(z|θ) of 1− σ over which
an observation is determined anomalous, the probability that
a normal observation is wrongly detected as anomalous is
then simply σ. This corresponds to the probability of the tails
beyond z and it can be expressed as:

Ā(z|θ) = 1−A(z|θ) =

∫
x∈Ω

P (x|θ)dx (3)

where Ω = {x : P (x|θ) ≤ P (z|θ)}.

Therefore, we determine anomaly for z using anomaly thresh-
old, denoted as σ:{

Normality if Ā(z|θ) ≥ σ
Anomaly if Ā(z|θ) < σ

(4)

As we mentioned, one of challenging issues of anomaly
detection is a false alarm. We will describe how we tackle
the problem of false alarm to improve the accuracy of the
proposed ADS in the following subsection.

B. Bayesian learning
Given the data samples in normal working conditions, we

need to estimate the parameter(s) θ for the statistical model.
In classical statistics, the approach would be to find the
maximum likelihood estimate of the parameters of the sta-
tistical model [8], and use those parameters when calculating

the probability of a new observation. However, the classical
approach does not consider the uncertainty in the estimate,
i.e., uncertainty regarding the true values of the parameters.
This is especially true when there are few data samples and
this is not an ideal property of an anomaly detector since it
will give a lot of false alarms by focusing too much on the
peculiarities of the data.

To address this issue, we use the Bayesian approach, which
considers the parameters of the distribution as stochastic
variables. The final answer is then obtained as an integral over
all possible parameter values. Thus, the Bayesian approach
will dampen the effect of random occurrences and instead
single out the significant cases. Although early on a Bayesian
approach will accept more samples as normal, the parameter
estimation will become more accurate as more training data
is collected, making anomaly detection more precise. In this
paper, we assume that we know the parametric form of the
distribution and let θ denote the unknown parameters of the
distribution. Hence, all the knowledge of the distribution are
the parametric form and the set of training samples X .

Under this assumption, we need to find the posterior distri-
bution over the parameters θ conditioned on X and this can
be expressed using Bayes’ rule:

P (θ|X) =
P (X, θ)

P (X)
=

P (X|θ)P (θ)∫
θ
P (X|θ)P (θ)dθ

(5)

Since we assume that X consists of independent sample, xi,j ,
it follows:

P (X|θ) = Πn
i=1Π

∆t
u
j=1P (xi,j |θ) (6)

P (θ|X) ∝ P (X|θ)P (θ) = Πn
i=1Π

∆t
u
j=1P (xi,j |θ)P (θ) (7)

where P (θ) is the prior distribution over the parameters.

C. Bayesian anomaly model

From A(z|θ) and P (θ|X), we infer the expected anomaly of
a new observation z by integrating over all possible parameter
values of θ:

A(z|X) =

∫
θ

A(z|θ)P (θ|X)dθ (8)

where A(z|X) is defined as the Bayesian Anomaly in this
paper. To express the posterior P (θ|X) in terms of the prior
P (θ), we substitute Eq. (5) to Eq. (8) and obtain:

A(z|X) =

∫
θ
A(z|θ)P (X|θ)P (θ)dθ∫
θ
P (X|θ)P (θ)dθ

(9)

The Bayesian Anomaly has many suitable properties to apply
it in practice: First, the false alarm rate, which is a major
problem for many anomaly detection algorithms when used in
practice, can be controlled directly by adjusting the anomaly
threshold, σ. Second, the Bayesian approach makes the system
work when there are limited amounts of training data, as is
often the case. Third, the training data used does not necessary
to be absolutely clean since the method will itself test each
sample and only learn those that are judged non-anomalous.
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Fig. 3: Speed difference measurement for 15 trains from
Shenzen station to Taoyuan station.
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V. ANOMALY DETECTION IN RAILWAY SYSTEMS

In this section, we build a statistical model from data in
normal situations and describe how the proposed ADS detects
anomalous behaviors in train speeds in railway systems.

A. Anomaly detection in speed change

To model a normal behavior, we observe the fact that train
operation regime between two stations, i.e., acceleration, run,
and braking, has a certain threshold. For example, all the
speed differences are within 4 m/s as shown in Fig. 3. We
also observe the number of occurrences of speed difference
for multiple trains between two stations as shown in Fig. 4.
Based on this, we assume that the speed difference follows an
exponential distribution:

P (x|λ) = λe−λx (10)

where λ is the inverse of the mean value of speed differences.
We assume that a set of training samples, X = {xi,j}, 1 6
i 6 N, 1 6 j 6 K, consists of speed difference for each train
between two measurement instants where N is the number of
trains and K is the number of measurement instants between
two stations. To calculate the mean value, we may take the
simple mean from X = {x1,1, ..., x1,K , ..., xN,1, ..., xN,K},
as follows:

λ =
NK∑N

i=1

∑K
j=1 xi,j

. (11)
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Fig. 5: Linear regression fit.

We can obtain Bayesian anomaly of our interested feature from
Eq. (8) by substituting θ to λ in Eq. (7) and λ parameter is
learned by the Bayesian model. It is now possible to find a
train that has changed behavior recently by testing its speed
differences against the average of those from a longer histor-
ical time period. For this, we observe speed differences that
are generated during a certain time interval, and fit them to the
probability distribution defined by the estimated parameter λ,
which is learned from log files in normal working conditions.
If the probability of the occurrence is too small, i.e., smaller
than a certain threshold, it is considered as anomaly.

B. Anomaly detection in travel distance
Although anomalous speed differences, i.e., sudden large

speed changes, are detected by our proposed ADS, it may not
be able to detect more sophisticated attacking scenarios. For
example, when an attacker gradually stops the train through
unauthorized active braking in the middle of the track, if the
speed change is still within the range of normal state, the
anomaly detection based only on the speed difference could
not address such scenario. Hence, we also consider the travel
distance of a train with respect to the time duration since the
departure instant. Without loss of generality, we assume that
at the departure station, time instant is set to 0. Given a time
instant, denoted as t, the travel distance, denoted as d, is then
estimated by the linear regression technique as follows:

d = αt+ β (12)

where α is a coefficient and β is the intercept, which are
learned by executing the gradient descent on a given training
dataset, which contains the samples, each being represented
by (t, d) where t is the time instant and d is the distance from
the departure station.

As shown in Fig. 5, the learned model based on linear
regression model is fit to the training data well. Hence,
anomalous events can be detected if a new observation deviates
from the normal pattern: if the observed travel distance is
higher/lower than the normal state, overspeed/stop event is
detected. To evaluate the correctness of the learning model,
we use a mean squared error (MSE) as follows:

err =
1

2m
[

m∑
i=1

(X̂i −Xi)
2] (13)



Fig. 6: Prediction by bayesian learning.

where m is the number of training samples, X̂i is an estimated
value, and Xi is an actual value corresponding to an input to
the function which generated the predictions. Given a new
observation, the anomaly is determined by comparing the
deviation of the observation from the estimated value, using
an anomaly threshold, σ ∈ [0, 1]:{

Anomaly if e′ ≥ σ
Normality if e′ < σ

(14)

where the deviation is computed as follows:

e′ =
(X̂i −Xi)

2

X̂i
2 . (15)

VI. EXPERIMENTAL RESULTS

A. Experimental Setting

We use OpenRails to generate the training data set in normal
working conditions for our machine learning algorithms. The
validation and test data sets are generated by randomly inject-
ing attacking messages that change the train speed accordingly.
We analyze the performance of ADS through the sensitivity
of the models. The model sensitivity represents the ability of
a test to correctly identify those with the anomaly and it is
computed as TP/(TP +FN) where TP is true positive and
FN is false negative.

B. Detection of Anomalous Speed Difference

In Fig. 6, we present the predictive distribution of the
speed difference predicted by Bayesian learning. The results
show that posterior distribution is well predicted by Bayesian
learning since the estimated distribution is almost identical
with the distribution of the observed data in the training
data set. This demonstrates the effectiveness of the Bayesian
learning model in fitting the data samples.

In Fig. 7, we present the sensitivity of the Bayesian learn-
ing model compared to the Maximum Likelihood Estimation
(MLE). The results show that the Bayesian learning model
outperforms the MLE approach. With the entire testing data
set, the Bayesian learning model achieves up to 78% of
sensitivity compared to 48% generated by the MLE approach.
Even though the Bayesian learning model requires complex
computation to estimate the parameter of the probability
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model, this is only one-time cost and can be run offline given
the training data set of the model.

C. Detection of Anomalous Travel Distance
1) Error rate of learning model: In Fig. 8, we present

the learning curve of training set and cross validation set
with respect to the number of training samples to show the
correctness of our learning method. The results show that when
we train data only based on very small sample size, the error is
small since the model is likely to be biased on those samples.
When the sample size is increased, the model is adjusted for
all training samples, and thus the error is increased. We also
observe that after the moment when the number of samples
is large enough, the training error is stable. We use the cross
validation set to estimate the accuracy of learning method and
the number of observation in the cross validation set is much
larger than the number of training samples. The results show
that when the number of training sample is small, a lot of
samples in the cross validation set do not appear in the training
set, and thus making the error dominated. However, when the
number of training sample is increased, samples in the cross
validation set can be covered by the training set. Therefore,
the training error decreases and attains the training error when
the number of samples is large enough.

2) Accuracy of learning model: In Fig. 9, we compare
the sensitivity of ADS and that of baseline with respect
to the number of samples. In the baseline approach, the
anomaly threshold is fixed for all the observations, whereas
ADS adjusts the anomaly threshold for each observation.
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Choosing an appropriate fixed threshold gives the fairness for
the comparison, e.g., if the fixed threshold is too large, there
are more false alarms. Hence, we choose the value as 0.0225,
which is a bit larger than the adjusted threshold by ADS,
0.008982. The results show that the adjusted threshold of ADS
has always better sensitivity than that of baseline approach.
Furthermore, ADS has better sensitivity when the sample size
is increased while the baseline approach has similar sensitivity
regardless of the sample size. This is because ADS adjusts
the threshold by comparing it with the computed error for
each observation and changes the threshold as the error value
if anomaly decision is not correct. Therefore, this helps to
increase the sensitivity with more sample sizes. The adjusted
threshold allows by up to 9% deviations as normal, whereas
the fixed threshold allows by up to 15% deviations as normal.
This shows the importance of adjusting threshold appropriately
for accurate anomaly detection.

VII. RELATED WORK

Typical use cases of anomaly detection include intrusion
detection for cyber-security [9], fault detection in safety crit-
ical systems, and military surveillance for enemy activities.
The study of [10] is based on clustering technique to identify
anomalous measurements in sensor nodes. Although this tech-
nique does not require a priori knowledge of data distribution,
it is difficult to determine an appropriate parameter of cluster
width, which is used to compute the average inter-cluster
distance. Similar to our work, a data-driven modeling approach
is proposed in [11] to identify point anomalies by using
the sequential information of sensor reading. The authors
proposed several one-step ahead predictors, which are based
on a sliding window of previous data, to predict the new
output and compare it to the actual output. However, this
work does not easily integrate several sensor streams to help
detect anomalies. The authors in [12] apply attributed graphs
by allowing for contextual data to be included within a graph
structure. Specifically, they propose the algorithm to explore
parts of the graph that were previously less emphasized by
using additional metadata. However, the algorithm of [12] is
difficult to use in real-time analytics since the estimation of
their algorithm is not explored in detail.

Anomaly detection in railway systems has also gained
importance to address the issue of maintenance and condition
monitoring. The authors in [6] proposed an automatic detection

system to identify anomalies for predicting potential failures.
Similar to our work, they firstly characterize normal behavior
by taking account data such as itinerary, weather conditions,
etc. They then measure the compliance of new data according
to extracted knowledge by classifying whether a system be-
havior is normal or anomalous. Although this work considers
the temporal nature of sequential data which is collected by
sensors, they do not meet the real-time issue, i.e., cannot detect
the anomalies on the running trains. On the other hand, our
work realizes the online anomaly detection system.

VIII. CONCLUSION

In this paper, we proposed an online anomaly detection
scheme (ADS) for train speed in railway systems. We de-
veloped a Bayesian statistical model that represents speed
changes of trains in normal working conditions. Assuming that
this follows a probability distribution, we estimated the param-
eter of the probability distribution and successfully detected
the anomaly by computing the occurrence probability of a new
observation of speed change with the probability distribution.
However, using only the proposed Bayesian model may not
address more sophisticated attacking scenarios in which train
speed is gradually reduced or increased, we proposed a linear
regression model that takes into account travel distance to
detect more advanced attacks. The validation was performed
through simulations on data sets which are generated from
the OpenRails platform. The results show that the proposed
scheme efficiently detects anomalous speed change by accurate
predictions from the learning phase of the proposed Bayesian
model and it outperforms a baseline approach. The simulation
results also demonstrate the accuracy of the proposed detec-
tion scheme using linear regression model by increasing the
sensitivity by up to 22% compared with the baseline approach.
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