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Abstract—Recent research has proposed that Content Delivery
Networks (CDNs) can use better bandwidth allocation to improve
video streaming services through congested links. Because CDNs
are usually not located at the bottleneck link, shared bottleneck
(co-bottleneck) detection on the video servers is necessary for
joint flow shaping and the Quality of Experience (QoE) improve-
ments. However, co-bottleneck detection is challenging in such
environments due to the large number of flows, possible network
topologies, and traffic patterns. Current detectors fail to balance
detection accuracy, speed and overhead, and suffer performance
degradation in the scale of thousands of flows on each video
server. We propose FlowBot, a novel model-based passive co-
bottleneck detector designed for deployment on a video server.
FlowBot uses Siamese model to learn flow representations, and
combines the training procedure with its clustering algorithm to
continue to provide strong performance with up to thousands of
flows. Our evaluations show that FlowBot can achieve consistently
high accuracy (over 70% F1 with around 90% precision) in most
tested scenarios, while maintaining a short detection delay of 3 s
and overhead similar to the fastest benchmark algorithms.

Index Terms—Shared bottleneck detection, Siamese model,
one-way delay

I. INTRODUCTION

Video streaming continues to grow as a dominant usage of

the Internet in recent years [1], and optimization of Content De-

livery Networks (CDNs) and video traffic is a trending research

topic. Researchers have improved several aspects of CDN-

based video streaming, with the goal of improving user expe-

rience: intra-CDN traffic [2], application-level optimizations,

e.g., Dynamic Adaptive Streaming over HTTP (DASH) [3],

[4], and the routing of user requests to the CDN edge servers,

e.g., anycast [5]. Despite these advancements, on-path network

bottlenecks still persist. End-to-end control [6]–[8] can improve

video streaming by letting the server control the bandwidth

usage of each co-bottlenecked flow, e.g., stabilizing bursty

video streams to improve Quality of Experience (QoE), or

enforcing a sender-defined policy on the streams. Co-bottleneck

detection forms a critical part of such systems.

There are two types of co-bottlenecks between video servers

and clients. A server-side co-bottleneck can arise due to im-

balances in edge-server load (which can follow a heavy-tailed

distribution [9]), or because the CDN’s anycast algorithm may

be unaware of server load, resulting in co-bottleneck at the edge

servers [5]. In contrast, downstream co-bottlenecks occur within

an access Internet Service Provider (ISP) either due to the ISP’s

link capacity or some bandwidth constraint. For instance, when

a large number of users at the same ISP watch the same video

during some event, the ISP’s link might be the bottleneck. Thus,

a good co-bottleneck detector must handle both scenarios for

end-to-end flow control in video servers.

An important feature of a CDN edge server is that it handles

many video streams simultaneously. For instance, each Open

Connect Appliance (OCA) [10] that Netflix provides to ISPs

has 18–190 Gbps throughput. Sending 1080p or 2k video at 10–

20 Mbps [11] reflects thousands to tens of thousands of flows

per OCA. This scale is challenging for co-bottleneck detection.

Co-bottleneck detection is a long-studied problem with two

distinct categories: active detection and passive detection. Ac-

tive detection approaches [12]–[14] send packets to probe the

links along the flow path. Pathneck [15] sends packets to

measure the delay of some partial paths, loading the links with

a packet train, and finding the link most affected by that load.

A major disadvantage of these approaches is high levels of

additional traffic, which is not suitable for large-scale scenarios.

Passive detection approaches [16]–[23] do not send any extra

traffic on the forward path, but instead passively analyzes

signals such as One Way Delay (OWD), Round Trip Time

(RTT), Inter Packet Arrival Time (IPAT), loss, etc. These

schemes exploit the correlation between the flows’ performance

across the co-bottleneck link; for example, two flows sharing

a co-bottleneck link experience similar queueing delays on

that link, resulting in similar OWD variation patterns, since

queueing delays are the largest source of variance in OWD.

Co-bottleneck detection is most commonly used in multi-path

applications such as MPTCP [24] and RMCAT [23], which uses

a detector to detect multiple subflows that share a co-bottleneck

link. In these use cases, the detector is designed for a small

number of subflows, as the number of subconnections is small

(around 2–10). To our knowledge, previous work neither has

satisfactory accuracy, nor is it well-evaluated, in scenarios with

thousands of flows.

To address these challenges, we propose FlowBot, a novel

passive co-bottleneck detector for video servers, based on a

Siamese network [25]. In FlowBot, each flow first goes through

a classifier to determine if it is bottlenecked, and then passes

one Convolutional Neural Network (CNN) model to extract

representations, which are then clustered to detect the co-

bottleneck groups. We use a simulated dataset with sufficient

variety to train the model, and use simulated and real test data

to evaluate it. The advantages of FlowBot include: (i) Accu-

racy at scale: Unlike the most recently published algorithm

Shared Bottleneck Detection (SBD) [17], we jointly choose

the threshold in training loss and the distance threshold in the

clustering, and can therefore maintain high accuracy for up to

1200 flows and 30 bottlenecks in our tests. (ii) Computational979-8-3503-0322-3/23/$31.00 ©2023 IEEE



feasibility: The representation size is designed to be small

to allow for efficient detection, allowing FlowBot to scale to

thousands of flows (iii) Generalizability: By using a simulated

dataset, FlowBot generalizes well to various real scenarios

without seeing any real data during the training.

Our contributions include the following:

• We generate a novel simulated dataset for co-bottleneck

detection study including 600 runs (15M triplet samples) with

various network topologies, traffic patterns, and ground truth

labels;

• We propose the first framework based on a Siamese model

for co-bottleneck detection problem, yielding a detector with

better generalizability and flexibility;

• We implement FlowBot, which achieves consistently high

accuracy with over 75% F1 and over 90% precision in most

tested scenarios using an improved clustering technique with

the smallest overhead;

• We evaluate FlowBot comprehensively on both simulation

and real experiments with built topologies using Google

Cloud Platform (GCP), GENI [26], and CloudLab [27].

This paper focuses on wired networks, and we do not

evaluate our approaches on wireless links which impose unique

challenges including random changes to OWD, the possibility

of non-congestive loss, and bitrate variability.

II. MOTIVATION

This section motivates FlowBot by discussing potential ap-

plications, previous approaches, and how they cannot satisfy

the requirements of these scenarios.

A. Application Scenarios

Co-bottleneck detection is useful for applications such as

end-to-end flow shaping and network diagnosis. In end-to-end

flow shaping, a content provider aims to improve some metric

(e.g., QoE) by reallocating traffic among video streams sharing

a co-bottleneck [6], [8]. Because such systems decrease one

flow’s traffic to increase another flow’s traffic, their action is

friendly to competing flows only if both flows share a co-

bottleneck link; thus, flow shaping systems need a co-bottleneck

detector to precisely determine which flows can be shaped

together. In network diagnosis, the output of co-bottleneck

detection can serve as a hint for load balancing to improve CDN

performance [28]. By detecting a server-side co-bottleneck, the

CDN can adjust its load balancing strategy to avoid congestion

at the edge servers. The detector can also provide co-bottleneck

information to cloud diagnosis systems such as BlameIt [29],

suggesting the location of the bottleneck link.

B. Previous Work

Co-bottleneck detection approaches can be classified into

two categories: active or passive approaches. Active approaches

send packets to measure the delay of some partial paths [12],

[14], [15], loading the links with a packet train, and finding

the link most affected by that load. Passive approaches use

signal processing techniques to process end host measure-

ments such as OWD (or RTT), loss, and IPAT to infer the

TABLE I: Co-bottleneck detection approaches.

Literature
Active/

Passive
Signal Overhead Type

IPAT-based [19], [30] P IPAT Deployment

Correlation-based [20] P OWD, loss Computation

DCW [18] P OWD Computation

Pathneck [8], [15] A RTT Network

TSLP [12], [14] A latency, throughput Deployment, network

QProbe [13] A IPAT Network

Last mile detector [31] P RTT, IPAT Deployment

SBD [16], [17] P OWD, SLR -

SBDV [21] P Congestion interval Computation

SB-FPS [22] P ECN Deployment

FlowBot (proposed) P OWD, SLR -

co-bottleneck among flows. There are two types of passive

approaches. (i) Correlation-based approaches [18], [20], [21]

exploit the correlation of flow signals, such as OWD or loss

rate, when the flows share co-bottleneck link. An example is

Delay Correlation with Wavelet denoising (DCW) [18], which

uses wavelet denoising to remove noise before calculating the

correlation. Such approaches usually have difficulty handling

path lag diversity, because diverse lags result in asynchronous

signals at the end hosts, making correlation more difficult.

They also require Θ(n2) work to compute pairwise correlations

between flows. (ii) Clustering-based approaches [16], [17],

[19], [30] cluster flows into co-bottleneck groups based on

some representations of the signals. An example is SBD [16],

[17], which uses summary statistics like skewness, variability,

OWD, and loss rate to represent each flow, then clusters these

representations to obtain co-bottleneck groups. The accuracy

of such approaches is highly dependent on the representation

quality and parameters such as the clustering threshold, which

are often scenario-dependent and hard to determine.

C. Requirements

To support large-scale applications, the detector must provide

two properties.

Accuracy at scale. Based on the problem scope, the detector

should scale to thousands of flows. As opposed to traditional

detection, where false positives and false negatives are equally

bad, we favor precision (fewer false positives) to reduce the

number of wrongly clustered flows, because especially in the

flow shaping scenario, incorrectly added flows will induce

unfriendly congestion at the bottleneck link. Most existing pas-

sive co-bottleneck detection methods are designed to support

smaller-scale multipath applications such as MPTCP, and do not

consider large-scale use cases. For example, SBD is designed

for up to 20 flows, and its performance is known to degrade

severely when the number of parallel bottlenecks increases.

Maintaining good accuracy at scale remains a challenge for

co-bottleneck detectors.

Low overhead. In these applications, the detector should not

introduce too much extra overhead, especially since the per-

flow network overhead is multiplied by a large number of flows.

We consider three types of overhead: (i) Network overhead.

Active approaches introduce extra overhead by sending many

probing packets, which does not scale well to a large number



of flows. (ii) Computational overhead. Some correlation-based

passive methods such as DCW require the server to pairwise-

correlate the raw signals such as OWD and loss rate, resulting

in high computational requirements. (iii) Deployment overhead.

Some passive approaches deploy extra observers to collect

signals like IPAT, but the deployment of such observers may

be difficult in real networks.
In summary, the detector should be able to detect the co-

bottleneck with high accuracy at large scale with low overhead.

However, to the best of our knowledge, existing methods cannot

simultaneously satisfy both requirements. Thus, we propose

FlowBot to address these challenges for co-bottleneck detection

for large-scale applications, and compare it with prior work in

Table I.

III. SYSTEM DESIGN

This section introduces the general design of our co-

bottleneck detection system, then describes each component.

A. Overview

Our passive co-bottleneck detector (illustrated in Fig. 1) first

extracts some time-series data, then removes the non-bottleneck

flows, and finally clusters the data to determine co-bottlenecked

groups. To remove non-bottleneck flows, FlowBot feeds the

statistics of the time series into a binary congestion classifier

to determine whether or not the flow is bottlenecked. Then,

FlowBot uses a representation for clustering instead of the

pairwise correlation to avoid the Θ(n2) cost of pairwise cor-

relation. An accurate representation must capture flow features

of potentially heterogeneous bottleneck links. Reducing data

to such a representation is intrinsically harder for traditional

signal processing approaches, as most of them are built on

some assumptions about the bottleneck link, which are not the-

oretically comprehensive. By contrast, FlowBot uses a Siamese

model [25] for feature extraction, i.e., each flow’s signals are

processed by the same model to extract its representation. The

model is trained using triplet loss [32], which reduces the

intra-group distance while increasing the inter-group distance.

These representations are then clustered using the Unsupervised

Nearest Neighbors (UNN) algorithm [33] to obtain the co-

bottleneck groups.
We can set the number of output dimensions to be larger than

previous work to increase the model’s representation ability, and

thus increase accuracy, but not too large, to keep the overhead

low. We can use large datasets to cover many networking

scenarios to produce a model with good generalization ability

for real networks. We keep the measurement window as small

as 1.5 s to ensure fast detection. Furthermore, FlowBot’s

double-margin triplet loss margin parameters can be used to

inform the thresholds used for clustering, meaning that FlowBot

representations are inherently normalized, and a given radius

in the clustering algorithm can achieve a good balance between

precision and recall.

B. Dataset Generation

A high-quality dataset is critical to train FlowBot for various

scenarios. The features we choose for our dataset are OWD,
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Fig. 1: Architecture of FlowBot.

RTT and, Short-term Loss Rate (SLR), which best characterize

signals from the queue. To balance the variety and quality of the

data, we design a family of network topologies and use the ns-3

network simulator [34] to obtain simulated data, monitoring the

queues to determine ground truth labels for bottlenecks. We

carefully construct training sets for both the binary congestion

classifier (§ III-C) and the Siamese model (§ III-D). We describe

dataset generation in § IV and V.

C. Binary Congestion Classification

Though bottlenecked flows experience varied network char-

acteristics due to queue variations over time and location, non-

bottleneck flows usually have similar patterns, with low loss

rates and relatively steady OWDs. We remove non-bottlenecked

links before clustering to reduce the number of false positives.

Since non-bottleneck flows have clear features, we use the flow

statistics (e.g., mean and variance) of OWD, RTT, and SLR

as input features, build a binary congestion classifier using

random forest, and construct a dataset for training and testing.

We describe the dataset and training of the classifier in § V.

D. Model Training

FlowBot uses a Siamese model [25] with double-margin

triplet loss [32].

Siamese model with DCCNN. To train a good representation

for clustering, we use a Siamese model [25]. As a common

technique for clustering and multiclass classification problem,

Siamese model is a type of neural network that includes

multiple identical sub-models. It learns the similarity among

samples using triplet loss and gives a representation, making it a

great fit for our flow clustering problem. Furthermore, Siamese

models are generally well-suited to smaller datasets.

For each interval, the signals of each flow are fed into

the CNN model to extract that flow’s representation. Within

the Siamese architecture, we use the Dilated Causal CNN

(DCCNN) [35] as our model for feature extraction. DCCNN

is an efficient CNN model that uses different dilations to keep

track of sequential dependencies at different time scales. The

exponentially increasing dilations enable the model to capture

the long-term dependencies without having too many neurons.

To further reduce the dimensionality, we use global average

pooling instead of local max pooling.

The model architecture is shown in Table II. The input is of

shape [Nbatch , L, nin ], where Nbatch is the batch size (256 by

default), L is the sequence length (300 for 1.5 s), and nin is





layer is the left middle links, which are candidate server-side

bottleneck links (link 4–6, 5–7); the third layer is the fully-

connected middle links, emulating the core Internet (link 6–

8, 7–8, 6–9, 7–9); the fourth layer is the right middle links,

which are candidate client-side bottleneck links (link 8–10,

9–11); and the last layer is the right leaf links connecting

gateways to the right leaf receivers (node 12–15). The mutable

components of the topology include the number of left or right

middle links, and the number of left or right leaf links for each

gateway; we discuss these parameterizations in § IV-D. All link

characteristics can be configured, as discussed in the § IV-C.

One important advantage of using EDB is that it provides a

good abstraction of typical network topologies and bottleneck

cases in CDN scenarios, yet is easy to control. We believe the

simulated dataset generalizes because co-bottlenecked flows are

identifiable from the characteristics of the bottlenecked flows,

rather than the topology directly: (i) the model’s input is time-

series from each flow, which can be distinguished not by hop-

by-hop changes but only by the aggregate path metrics, so the

effect of link changes on dataset is not direct; (ii) the topology

does affect the flow characteristics, but most of the impact on

main signals (delay variation, SLR) is caused by the bottleneck

link. These factors allow EDB to be a good enough abstraction

to obtain flow-wise generalizability for our dataset.

The two most common bottleneck locations are server-side

and client-side. Server-side bottlenecks can be caused by insuf-

ficient bandwidth resources and imbalanced load on the server,

and client-side bottlenecks are typically caused by the last-mile

ISP or an access link bandwidth limit. These bottlenecks are

represented by left and right middle links respectively. The fixed

bottleneck locations simplify monitoring of the queue backlog

and bottleneck behavior control for co-bottleneck analysis.

C. Links

We set the bandwidth of non-bottleneck links to be large

enough to support the simulated traffic load. The number and

bandwidth of bottleneck links are chosen based on the scenario,

with a smaller number and larger bandwidth for left bottlenecks.

§ V discusses these scenarios.

Varying path delay is critical for generating realistic data.

With our topology, we choose delays so that each middle

link models a long path through the core network, and all

other links model a one-hop link, so that the overall OWD

distribution is realistic for each flow. We first set the delay of

one-hop links from a Gaussian distribution N(0.5, 0.01), then

sample the middle links’ delay from LogNormal(2.5, 1.0),
which has 5, 50, and 95 percentile latencies of 1.7 ms, 12 ms,

90 ms respectively. We choose the access leaf link randomly

from [1, 3] for left leaf links and [1, 5] for right leaf links.

The bottleneck queue discipline is chosen randomly between

PIE [36] and CoDel [37]. The queue size is chosen uniformly

at random between 100 to 500 packets.

D. Flows

Each flow is used to model one user’s video stream, so we

choose a rate from a discrete distribution with probabilities set

based on the measured proportions of YouTube played bitrates

from Table III of [38]. Since we want to saturate bottleneck

links, the number of users is chosen from a Normal distribution

with mean and standard deviation set to achieve a certain level

of congestion for a given cross traffic load. Each simulation

lasts 30 s. To focus on scenarios where flows share the same

link (regardless of whether or not they are co-bottlenecked), we

start and end the flows within the first and last three seconds of

the simulation, so that flows always overlap during the middle

24 s. The underlying transport protocol is TCP.

E. Cross traffic

We model cross traffic using Poisson Pareto Burst Process

(PPBP) [39], [40], which sends bursts based on a Poisson

process with rate λ, with each burst duration following a Pareto

distribution determined by Hurst parameter H , and the mean

duration Ton . Each burst is a flow with constant bitrate r. The

average aggregate rate of the bursts is raggregated = λ · r · Ton .

We set each flow to be a TCP flow with r = 10 Mbps, and set

Ton to 547 ms for the each burst flow based on the measure-

ments from [41]. The Hurst exponent H is randomly sampled

from [0.5, 0.9] [40], [42], [43]. Since Ton , r are determined,

λ and raggregated are calculated. We use a parameter rcross
to control the ratio of raggregated to the total link bandwidth

and then implicitly calculate raggregated and λ accordingly. For

each bottleneck link, we define congestion level as the ratio of

the total required flow rates (including cross traffic) to the link

bandwidth. Thus, the congestion level is determined by rcross
and the total user rate. In different scenarios, either rcross or

the total user rate can change, the details which are discussed

in § V and shown in Tables III and V.

F. Ground truth

We monitor the queue lengths of each left and right middle

link, which are the only potential bottleneck links, and then

for each flow, we determine the bottleneck after the simulation.

During a specific time interval, suppose the queue lengths of the

left and right middle link are q1, q2 respectively. Let qTh = 50
be the threshold of a significant bottleneck. If q1 < qTh , q2 <
qTh , then the flow is labeled as non-bottlenecked; otherwise,

the flow is labeled to be bottlenecked by the link with the larger

backlog between q1, q2. We do not consider flows that traverse

multiple bottlenecks as they are rare in large-scale networks;

the benefit of such is limited but the detection cost is high. Thus,

we do not consider scenarios having both q1 > qTh , q2 > qTh .

V. DETECTOR TRAINING

This section describes dataset generation and training for

the non-bottleneck binary congestion classifier and the Siamese

model for co-bottleneck detection.

Dataset generation. For each simulation run, we collect each

flow’s time series OWD, RTT, and SLR, and the queue backlogs

of each left-middle and right-middle link, every 5 ms. The

time series are divided into detection intervals (e.g., 1.5 s). In

each interval, we find the ground truth label for each flow as

described in § IV-F. For the training set, we build triplets by



TABLE III: Training set settings (“-” for non-bottleneck).

Scenario
Left middle

links & bw (bps)

Right middle

links & bw (bps)

Congestion

level

Cross traffic

ratio

Left small 2∼4 , 300∼500 M 2∼6 , - N(1.15, 0.1) 0.2∼0.8

Left large 2, 0.5∼1 Gbps 8∼16 , - N(1.15, 0.1) 0.2∼0.8

Right small 2∼4, - 2∼6 , 150∼300 M N(1.15, 0.1) 0.2∼0.8

Right large 2∼3, - 8∼16 , 150∼300 M N(1.15, 0.1) 0.2∼0.8

Binary

Classification
1, - 4∼16 , 150∼200 M 0.9∼1.05 0.5∼0.65

TABLE IV: Accuracy of classifiers for bottleneck classification.

Naı̈ve
Logistic

Regression
KNN SVM

Decision

Tree

Random

Forest

Bottleneck F1 0.79 0.21 0.89 0.74 0.87 0.88

Non-bottleneck F1 0.87 0.73 0.91 0.85 0.90 0.91

sampling two flows with the same label and one with a different

label. We sample 2·max{2·npos , nneg} triplets for each cluster.

For the test set, we prepare the flows’ data and ground truth.

We construct two datasets: one for co-bottleneck detection,

and a smaller one for non-bottleneck flow classification. Ta-

ble III shows the settings, the first four rows being for co-

bottleneck detection, and the last row for non-bottleneck flow

classification.

Training sets. For co-bottleneck detection, we generated

540 scenarios, aiming to be more general with fewer con-

straints. We design two categories of scenarios: server-side

bottlenecks (left bottlenecks), and client-side bottlenecks (right

bottlenecks). Left bottlenecks scenarios emulate cases bottle-

necked at the edge server due to limited bandwidth or poor

load balancing, so we use fewer left middle links and more

bottleneck bandwidth. Right bottlenecks scenarios emulate bot-

tlenecks at the ISP or access links, so we use more right middle

links and less bottleneck bandwidth. For all scenarios, we use a

wide range of cross-traffic ratios and congestion levels to ensure

data quality and variety for training. For non-bottleneck flow

classification, we generated 60 runs, focusing on scenarios with

unbottlenecked flows, with emphasis on diversity in links and

congestion level.

Validation and test set. Table V and § VI describe our

validation scenarios. For each scenario, we generate 24, 20,

20, 80, and 80 runs respectively.

Training the binary congestion classifier. For the classifier,

we extract the four features from each interval: OWDstd ,

RTTstd , SLRmean , SLRstd , and evaluated several classifi-

cation models, as shown in Table IV. We choose Random

Forest for higher non-bottleneck detection accuracy, to improve

Siamese model performance.

Training the Siamese model. We train and test the Siamese

model using the dataset described above, split with a 8:1 ratio.

From Eq. 1, we define ReLU(α2 − min{d(a, n), d(p, n)}2)
as the negative loss, and ReLU(d(a, p)2 − β2) as the positive

loss. After convergence, the test loss is 0.206, with 0.233

positive loss and 0.178 negative loss, corresponding to intra-

and inter-cluster distances of 0.525 and 0.907, respectively. The

difference between the distances shows that our model is well

trained. The distance threshold r (§ III-E) should be less than

intra-cluster distance to avoid interference from other clusters;

we find r = 0.4 works well in practice.

VI. EVALUATION

We implemented FlowBot in Python which is available at

https://github.com/PrinceS17/flowbot. This section introduces

the experimental setup and presents the accuracy results of

FlowBot under both ns-3 simulation and in real experiments.

A. Experiment Setup

Each experiment lasts 30 s, with flows starting in the first

3 s and ending in the last 3 s. In each detection interval, the

detector predicts co-bottleneck groups for each flow, which we

call predicted flow labels. We compare the predicted labels with

ground truth labels to calculate accuracy. Each box aggregates

all detection intervals across four runs of each network setting.

Benchmark algorithms. Among passive detection algorithms

using only end-host signals, we choose DCW to represent

correlation-based algorithms, and use SBD as it is the latest and

best clustering-based algorithm. We use two variants of SBD,

rmcatSBD and dcSBD, which use the same representations

but cluster using threshold-based hierarchical clustering and

Chinese Whispers respectively. To obtain a more compre-

hensive understanding of the characteristics of FlowBot as

compared to previous approaches, we compare FlowBot with

three benchmark algorithms: DCW, rmcatSBD, and dcSBD in

both simulated and real tests.

We implement DCW as described in [18]. In our scenarios,

the original threshold 0.512 is too low, so we choose a threshold

of 0.8 to provide better precision and F1. We implement

rmcatSBD and dcSBD as in [17], and parameterize them as

in [44] and [17] respectively.

Metrics. We use F1, precision, and recall between predicted

labels and ground truth labels as our accuracy metrics. Unlike

in traditional classification, co-bottleneck detection only needs

flows to share the same label, and the value of the label is

irrelevant. Thus, we permute the predicted and truth labels to

maximize the level of matching before calculating precision

and recall.

For example, consider a scenario with ground truth clusters

C = {c1, . . . , cm} and predicted clusters C ′ = {c′
1
, . . . , c′

n
},

where each flow i ∈ [1, N ] has ground truth label li ∈ C
and predicted label l′

i
∈ C ′. Let Mok,Mo′

k
be the modal label

in in ck, c
′

k
respectively, and TPk,TP

′

k
,FPk,FP

′

k
,FNk,FN

′

k

be true positives, false positives, and false negatives of ck, c
′

k

respectively, e.g., TPk are the correctly grouped flows in ck,

i.e., flows with l′
i
= Mo′

k
. Then precision p and recall r are

given by

p =
n∑

k=1

|c′
k
|

N

TP′

k

TP′

k
+ FP′

k

=

n∑

k=1

|{i ∈ c′
k
|li = Mok}|

N
(2)

r =

m∑

k=1

|ck|

N

TPk

TPk + FNk

=

m∑

k=1

|{i ∈ ck|l
′

i
= Mo′

k
}|

N
(3)

with F1 = 2pr/(p + r). In real-world applications, precision

means fewer incorrectly grouped non-bottlenecked flows, and
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