
370 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 2, FEBRUARY 2006

Wormhole Attacks in Wireless Networks
Yih-Chun Hu, Member, IEEE, Adrian Perrig, Member, IEEE, and David B. Johnson, Member, IEEE

Abstract—As mobile ad hoc network applications are deployed,
security emerges as a central requirement. In this paper, we intro-
duce the wormhole attack, a severe attack in ad hoc networks that
is particularly challenging to defend against. The wormhole attack
is possible even if the attacker has not compromised any hosts,
and even if all communication provides authenticity and confiden-
tiality. In the wormhole attack, an attacker records packets (or bits)
at one location in the network, tunnels them (possibly selectively)
to another location, and retransmits them there into the network.
The wormhole attack can form a serious threat in wireless net-
works, especially against many ad hoc network routing protocols
and location-based wireless security systems. For example, most
existing ad hoc network routing protocols, without some mech-
anism to defend against the wormhole attack, would be unable
to find routes longer than one or two hops, severely disrupting
communication. We present a general mechanism, called packet
leashes, for detecting and, thus defending against wormhole at-
tacks, and we present a specific protocol, called TIK, that imple-
ments leashes. We also discuss topology-based wormhole detection,
and show that it is impossible for these approaches to detect some
wormhole topologies.

Index Terms—Ad hoc networks, computer network security,
computer networks, packet leash, TIK, tunneling, wireless local
area network (LAN), wormhole.

I. INTRODUCTION

THE PROMISE of mobile ad hoc networks to solve chal-
lenging real-world problems continues to attract attention

from industrial and academic research projects. Applications
are emerging and widespread adoption is on the horizon. Most
previous ad hoc networking research has focused on prob-
lems such as routing and communication, assuming a trusted
environment. However, many applications run in untrusted
environments and require secure communication and routing.
Applications that may require secure communications include
emergency response operations, military or police networks,

Manuscript received October 11, 2004; revised August 15, 2005. This work
was supported in part by the National Science Foundation (NSF) under Grant
CCR-0209204, in part by NASA under Grant NAG3-2534, and in part by
Schlumberger and Bosch. The views and conclusions contained here are those
of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either express or implied, of NSF, NASA,
Schlumberger, Bosch, The University of Illinois, Carnegie Mellon University,
Rice University, or the U.S. Government or any of its agencies. This paper
was presented in part at the 22nd Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2003), April 3, 2003,
San Francisco, CA

Y.-C. Hu is with the Department of Electrical and Computer Engineering,
University of Illinois at Urbana–Champaign, Urbana, IL 61801 USA (e-mail:
yihchun@crhc.uiuc.edu).

A. Perrig is with the Department of Electrical and Computer Engineering,
Carnegie Mellon University, Pittsburgh, PA 15213-3890 USA (e-mail: adrian@
ece.cmu.edu).

D. B. Johnson is with the Department of Computer Science, Rice University,
Houston, TX 77005-1892 USA (e-mail: dbj@cs.rice.edu).

Digital Object Identifier 10.1109/JSAC.2005.861394

and safety-critical business operations such as oil drilling
platforms or mining operations. For example, in emergency
response operations such as after a natural disaster like a flood,
tornado, hurricane, or earthquake, ad hoc networks could be
used for real-time safety feedback; regular communication
networks may be damaged, so emergency rescue teams might
rely upon ad hoc networks for communication.

In this paper, we define a particularly challenging attack to de-
fend against, which we call a wormhole attack, and we present
a new, general mechanism for detecting and, thus defending
against wormhole attacks. In this attack, an attacker records a
packet, or individual bits from a packet, at one location in the
network, tunnels the packet (possibly selectively) to another lo-
cation, and replays it there. We introduce the general mech-
anism of packet leashes to detect wormhole attacks, and we
present two types of leashes: geographic leashes and temporal
leashes. We design an efficient authentication protocol, called
TIK, for use with temporal leashes. We also analyze other de-
tection approaches, such as topology-based wormhole detection
[31], [40], and show that topology-based detection cannot de-
tect some wormholes. We focus our discussion in this paper on
wireless ad hoc networks, but our results are applicable more
broadly to other types of networks, such as wireless local area
networks (LANs) and cellular networks.

Section II of this paper presents the wormhole attack and
discusses how the wormhole attack can be used against ad hoc
network routing protocols. In Section III, we present our as-
sumptions. Section IV presents leashes and discusses a general
approach for detecting wormholes. Section V discusses tem-
poral leashes in detail and presents the TIK protocol for instant
wireless broadcast authentication, and Section VI provides an
evaluation of TIK and packet leashes, as well as other techniques
for wormhole detection. Section VII discusses related work, and
Section VIII presents our conclusions.

II. PROBLEM STATEMENT

In a wormhole attack, an attacker receives packets at one point
in the network, “tunnels” them to another point in the network,
and then replays them into the network from that point. For tun-
neled distances longer than the normal wireless transmission
range of a single hop, it is simple for the attacker to make the
tunneled packet arrive with better metric than a normal multihop
route, for example, through use of a single long-range direc-
tional wireless link or through a direct wired link to a colluding
attacker. It is also possible for the attacker to forward each bit
over the wormhole directly, without waiting for an entire packet
to be received before beginning to tunnel the bits of the packet,
in order to minimize delay introduced by the wormhole. Due
to the nature of wireless transmission, the attacker can create a
wormhole even for packets not addressed to itself, since it can

0733-8716/$20.00 © 2006 IEEE

HU et al.: WORMHOLE ATTACKS IN WIRELESS NETWORKS 371

overhear them in wireless transmission and tunnel them to the
colluding attacker at the opposite end of the wormhole.

If the attacker performs this tunneling honestly and reliably,
no harm is done; the attacker actually provides a useful service
in connecting the network more efficiently. However, the worm-
hole puts the attacker in a very powerful position relative to other
nodes in the network, and the attacker could exploit this posi-
tion in a variety of ways. The attack can also still be performed
even if the network communication provides confidentiality and
authenticity, and even if the attacker has no cryptographic keys.
Furthermore, the attacker is invisible at higher layers; unlike a
malicious node in a routing protocol, which can often easily be
named, the presence of the wormhole and the two colluding at-
tackers at either endpoint of the wormhole are not visible in the
route.

The wormhole attack is particularly dangerous against many
ad hoc network routing protocols in which the nodes that hear
a packet transmission directly from some node consider them-
selves to be in range of (and, thus a neighbor of) that node.
For example, when used against an on-demand routing protocol
such as dynamic source routing (DSR) [16], [17] or ad hoc
on-demand distance vector (AODV) [27], a powerful applica-
tion of the wormhole attack can be mounted by tunneling each
ROUTE REQUEST packet directly to the destination target node
of the REQUEST. When the destination node’s neighbors hear
this REQUEST packet, they will follow normal routing protocol
processing to rebroadcast that copy of the REQUEST, and then
discard without processing all other received ROUTE REQUEST

packets originating from this same route discovery. This attack,
thus, prevents any routes other than through the wormhole from
being discovered, and if the attacker is near the initiator of the
route discovery, this attack can even prevent routes more than
two hops long from being discovered. Possible ways for the at-
tacker to then exploit the wormhole include discarding rather
than forwarding all data packets, thereby creating a permanent
denial-of-service (DoS) attack (no other route to the destination
can be discovered as long as the attacker maintains the worm-
hole for ROUTE REQUEST packets), or selectively discarding or
modifying certain data packets.

The neighbor discovery mechanisms of periodic (proactive)
routing protocols such as dynamic destination-sequenced dis-
tance-vector (DSDV) [26], optimized link-state routing (OLSR)
[33], and topology broadcast based on reverse path forwarding
(TBRPF) [5] rely heavily on the reception of broadcast packets
as a means for neighbor detection, and are also extremely
vulnerable to this attack. For example, OLSR and TBRPF use
HELLO packets for neighbor detection, so if an attacker tunnels
through a wormhole to a colluding attacker near node all
HELLO packets transmitted by node , and likewise tunnels
back to the first attacker all HELLO packets transmitted by ,
then and will believe that they are neighbors, which would
cause the routing protocol to fail to find routes when they are
not actually neighbors.

For DSDV, if each routing advertisement sent by node or
node were tunneled through a wormhole between colluding
attackers near these nodes, as described above, then and
would believe that they were neighbors. If and , however,
were not within wireless transmission range of each other, they

would be unable to communicate. Furthermore, if the best ex-
isting route from to were at least hops long, then any
node within hops of would be unable to communicate with

, and any node within hops of would be unable to com-
municate with . Otherwise, suppose were within hops of

, but had a valid route to . Since advertises a metric of 1
route to , would hear a metric route to . will use
that route if it is not within hops of , in which case there
would be an -hop route from to , and a route of length

from to , contradicting the premise that the best real
route from to is at least hops long.

In each of these protocols, the wormhole can be used to at-
tract ad hoc network traffic, and can use this position to eaves-
drop on traffic, maliciously drop packets, or to perform man-in-
the-middle attacks against protocols used in the network. The
wormhole attack is also dangerous in other types of wireless
networks and applications. One example is any wireless access
control system that is based on physical proximity, such as wire-
less car keys, or proximity and token-based access control sys-
tems for PCs [8], [20]. In such systems, an attacker could relay
the authentication exchanges to gain unauthorized access.

III. ASSUMPTIONS, NOTATION, AND ATTACKER MODEL

The acronym “MAC” may in general stand for “medium
access control” protocol or “message authentication code.” To
avoid confusion, we use “MAC” in this paper to refer to the
network medium access control protocol at the link layer, and
we use “HMAC” to refer to a message authentication code used
for authentication (HMAC is a particular instance of a message
authentication code [4]).

For reasons such as differences in wireless interference,
transmit power, or antenna operation, links between nodes in
a wireless network may at times successfully work in only
one direction; such a unidirectional wireless link between two
nodes and might allow to send packets to but not
for to send packets to . In many cases, however, wireless
links are able to operate as bidirectional links. A MAC protocol
generally is designed to support operation over unidirectional
links or is designed only for bidirectional links; the introduction
of our TIK protocol does not affect the capability of the MAC
protocol to operate over unidirectional links.

Security attacks on the wireless network’s physical layer
are beyond the scope of this paper. Spread-spectrum has been
studied as a mechanism for securing the physical layer against
jamming [30]. DoS attacks against MAC layer protocols are
also beyond the scope of this paper; MAC layer protocols
that do not employ some form of carrier sense, such as pure
ALOHA and Slotted ALOHA [1], are less vulnerable to DoS
attacks, although they tend to use the channel less efficiently.

We assume that the adversary can place nodes at arbitrary
places in the network, and that these nodes are connected
through a communication channel that is unobservable by other
nodes, but follows the laws of physics (i.e., messages cannot
travel faster than the speed-of-light). We assume that network
nodes are not compromised, but we discuss in Section VI-B
potential attacks if network nodes are compromised.

We assume that the wireless network may drop, corrupt, du-
plicate, or reorder packets. We also assume that the MAC layer

372 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 2, FEBRUARY 2006

contains some level of redundancy to detect randomly corrupted
packets; however, this mechanism is not designed to replace
cryptographic authentication mechanisms.

We assume that nodes in the network may be resource con-
strained. Thus, in providing for wormhole detection, we use effi-
cient symmetric cryptography, rather than relying on expensive
asymmetric cryptographic operations. Especially on CPU-lim-
ited devices, symmetric cryptographic operations (such as block
ciphers and hash functions) are three to four orders of magnitude
faster than asymmetric cryptographic operations (such as digital
signatures).

We assume that a node can obtain an authenticated key for
any other node. Like public keys in systems using asymmetric
cryptography, these keys in our protocol TIK (Section V) are
public values (once disclosed), although TIK uses only sym-
metric (not asymmetric) cryptography. A traditional approach
to this authenticated key distribution problem is to build on a
public key system for key distribution; a trusted entity can sign
public-key certificates for each node, and the nodes can then
use their public-key to sign a new (symmetric) key being dis-
tributed for use in TIK. Zhou and Haas [42] propose such a
public-key infrastructure; Hubaux et al. bootstrap trust relation-
ships from PGP-like certificates without relying on a trusted
public-key infrastructure [15]; Kong et al. [22] propose asym-
metric mechanisms for threshold signatures for certificates. Al-
ternatively, a trusted node can securely distribute an authenti-
cated TIK key using only symmetric-key cryptography [29] or
noncryptographic approaches [37].

IV. DETECTING WORMHOLE ATTACKS

In this section, we introduce the notion of a packet leash as
a general mechanism for detecting and, thus defending against
wormhole attacks. A leash is any information that is added to a
packet designed to restrict the packet’s maximum allowed trans-
mission distance. Leashes are designed to protect against worm-
holes over a single wireless transmission; when packets are sent
over multiple hops, each transmission requires the use of a new
leash. We distinguish between geographical leashes and tem-
poral leashes. A geographical leash ensures that the recipient
of the packet is within a certain distance from the sender. A
temporal leash ensures that the packet has an upper bound on
its lifetime, which restricts the maximum travel distance, since
the packet can travel at most at the speed-of-light. Either type
of leash can prevent the wormhole attack, because it allows the
receiver of a packet to detect if the packet traveled further than
the leash allows.

A. Geographical Leashes

To construct a geographical leash, in general, each node must
know its own location, and all nodes must have loosely synchro-
nized clocks. When sending a packet, the sending node includes
in the packet its own location , and the time at which it sent the
packet ; when receiving a packet, the receiving node compares
these values to its own location , and the time at which it re-
ceived the packet . If the clocks of the sender and receiver are
synchronized to within , and is an upper bound on the ve-
locity of any node, then the receiver can compute an upper bound
on the distance between the sender and itself . Specifically,

based on the timestamp in the packet, the local receive time
, the maximum relative error in location information , and the

locations of the receiver and the sender , then can be
bounded by . A stan-
dard digital signature scheme or other authentication technique
can be used to enable a receiver to authenticate the location and
timestamp in the received packet.This approach is similar to [10].

In certain circumstances, bounding the distance between the
sender and receiver, , cannot prevent wormhole attacks; for
example, when obstacles prevent communication between two
nodes that would otherwise be in transmission range, a dis-
tance-based scheme would still allow wormholes between the
sender and receiver. A network that uses location information
to create a geographical leash could control even these kinds
of wormholes. To accomplish this, each node would have a
radio propagation model. A receiver could verify that every pos-
sible location of the sender (a radius
around) can reach every possible location of the receiver (a

radius around).

B. Temporal Leashes

To construct a temporal leash, in general, all nodes must have
tightly synchronized clocks, such that maximum difference be-
tween any two nodes’ clocks is . The value of the parameter

must be known by all nodes in the network, and for temporal
leashes, generally must be on the order of a few microseconds or
even hundreds of nanoseconds. This level of time synchroniza-
tion can be achieved now with off-the-shelf hardware based on
LORAN-C [24], WWVB [25], GPS [7], [39], or on-chip atomic
clocks currently under development at NIST [21]; although such
hardware is not currently a common part of wireless network
nodes, it can be deployed in networks today and is expected to
become more widely utilized in future systems at reduced ex-
pense, size, weight, and power consumption. Although our gen-
eral requirement for time synchronization is indeed a restriction
on the applicability of temporal leashes, for applications that re-
quire defense against the wormhole attack, this requirement is
justified due to the seriousness of the attack and its potential dis-
ruption of the intended functioning of the network.

To use temporal leashes, when sending a packet, the sending
node includes in the packet the time at which it sent the packet

; when receiving a packet, the receiving node compares this
value to the time at which it received the packet . The receiver
is, thus, able to detect if the packet traveled too far, based on the
claimed transmission time and the speed-of-light. Alternatively,
a temporal leash can be constructed by instead including in the
packet an expiration time, after which the receiver should not
accept the packet; based on the allowed maximum transmission
distance and the speed-of-light, the sender sets this expiration
time in the packet as an offset from the time at which it sends the
packet. As with a geographical leash, a regular digital signature
scheme or other authentication technique can be used to allow
a receiver to authenticate a timestamp or expiration time in the
received packet.

C. Discussion

An advantage of geographical leashes over temporal leashes
is that the time synchronization can be much looser. Another

HU et al.: WORMHOLE ATTACKS IN WIRELESS NETWORKS 373

advantage of using geographical leashes in conjunction with a
signature scheme (i.e., a signature providing nonrepudiation),
is that an attacker can be caught if it pretends to reside at mul-
tiple locations. This use of nonrepudiation was also proposed
by Sirois and Kent [36]. When a legitimate node overhears the
attacker claiming to be in different locations that would only be
possible if the attacker could travel at a velocity above the max-
imum node velocity , the legitimate node can use the signed
locations to convince other legitimate nodes that the attacker is
malicious.

We define to be a bound on the maximum relative po-
sition error when any node determines its own location twice
within a period of time . By definition, . In addition,
when is small, should be small, since the algorithm a node
uses to determine its location should be aware of physical speed
limits of that node. If some node claims to be at locations
and at times and , respectively, that node is an attacker
if . A legitimate
node detecting this from these two packets can also broadcast
the two packets to convince other nodes that the first node is in-
deed an attacker. Each node hearing these messages can check
the two signatures, verify the discrepancy in the information,
and rebroadcast the information if it has not previously done so.
To easily perform duplicate suppression in rebroadcasting this
information, each node can maintain a blacklist, with each entry
in the blacklist containing a node address and the time at which
that blacklist entry expires. When a node receives a message
showing an attacker’s behavior, it checks if that attacker is al-
ready listed in its blacklist. If so, it updates the expiration time
on its current blacklist entry and discards the new message; oth-
erwise, it adds a new blacklist entry and propagates the message.

A potential problem with leashes using a timestamp in the
packet is that in a contention-based MAC protocol, the sender
may not know the precise time at which it will transmit a packet
it is sending. For example, a sender using the IEEE 802.11 MAC
protocol may not know the time a packet will be transmitted
until approximately one slot time (20 s) prior to transmission.
Generating an inefficient digital signature, such as RSA with a
1024-bit key, could take three orders of magnitude more time
than this slot time (on the order of 10 ms). The sender, how-
ever, can use two approaches to hide this signature generation
latency: either increase the minimum transmission unit to allow
computation to overlap with transmission, or use a more effi-
cient signature scheme, such as Schnorr’s signature [35], which
enables efficient signature generation after preprocessing.

V. TEMPORAL LEASHES AND THE TIK PROTOCOL

In this section, we discuss temporal leashes in more detail
and present the design and operation of our TIK protocol that
implements temporal leashes.

A. Temporal Leash Construction Details

We now discuss temporal leashes that are implemented with
a packet expiration time. We consider a sender who wants to
send a packet with a temporal leash, preventing the packet from
traveling further than distance . (All nodes are time synchro-
nized up to a maximum time synchronization error .) Thus,

, where is the propagation speed of our

wireless signal (i.e., the speed-of-light in air, which is very close
to the speed-of-light in a vacuum). When the sender sends the
packet at local time , it needs to set the packet expiration time
to . When the receiver receives the packet at
local time , it further processes the packet if the temporal leash
has not expired (i.e.,); otherwise, it drops the packet.
This assumes that the packet sending and receiving delay are
negligible, such that the sender can predict the precise sending
time and the receiver can immediately record when the
first bit arrives (or derive during reception since the bit rate
of transmission is known).

The receiver needs a way to authenticate the expiration time
, as otherwise an attacker could easily change that time and

wormhole the packet as far as it desires. Two traditional ap-
proaches for authentication fail for this application.

• Symmetric message authentication codes require
private keys to be established in a network of nodes and
have high overhead when used for broadcast authentica-
tion, especially in dense networks, since one authenticator
must be included for each destination

• Digital signatures are usually based on computationally
expensive asymmetric cryptography; for example, the
popular 1024-bit RSA digital signature algorithm [34] re-
quires about 10 ms on an 800 MHz Pentium III processor
for signature generation.

Since many wireless applications rely heavily on broadcast
communication, and since setting up keys is expensive,
we design the TIK protocol in Section V-C, based on a new
protocol for efficient broadcast authentication that simultane-
ously provides the functionality of a temporal leash.

B. Tree-Authenticated Values

The TIK protocol we present in Section V-C requires an ef-
ficient mechanism for authenticating keys. In this section, we
discuss the efficient hash tree authentication mechanism.

1) Hash Tree: To authenticate the sequence of values
, we place these values at the leaf nodes of

a binary tree. (For simplicity, we assume a balanced binary
tree, so is a power of 2.) We first “blind” all the values with
a one-way hash function to prevent disclosing additional
values (as we will describe below), so for each .
We then use the Merkle hash tree construction [23] to commit
to the values . Each internal node of the binary tree
is derived from its two child nodes. Consider the derivation of
the parent node from the left and right child nodes, and

, respectively: . We compute each level of
the tree recursively, from the leaf nodes to the root node. Fig. 1
shows this construction over the eight values ,
with , , and so on.

The root value of the tree is used to authenticate all leaf
values. To authenticate a value , the sender discloses , ,
and all values necessary to verify the path up to the root of the
tree. For example, if a sender wants to authenticate key in
Fig. 1, it includes the values , , and in the packet. A
receiver with an authentic root value can then verify that

equals the stored . If the verification is successful, the re-
ceiver knows that is authentic.

374 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 2, FEBRUARY 2006

Fig. 1. Merkle hash tree.

The extra in Fig. 1 are added to the tree to avoid
disclosing (in this example) the value in order to authenti-
cate .

2) Hash Tree Optimization: In TIK, the depth of the hash
tree can be quite large: given a fixed time interval , the tree is
of depth , where is the amount of time between
rekeying. For example, if the time interval is 11.5 s and nodes
can be rekeyed once per day, then the tree is of depth 34. As a
result, storing the entire tree is impractical.

It is possible, however, to store only the upper layers of
the tree and to recompute the lower layers on demand. To
reconstruct a subtree of depth requires applications of
the pseudorandom function (PRF) and applications of
the hash function, but this technique saves a factor of
in storage. This technique can also be further improved by
amortizing this calculation. Specifically, a node keeps two trees
of depth : one that is fully computed and currently being used,
and one that is being filled in. Since a total of
operations are required to fill in the tree, and the full tree will
be used for time intervals, the node needs to perform only
three operations per time interval, independent of the size of
the tree. For example, in the tree in Fig. 1, we may choose to re-
compute the values on demand. Then, we
will store the values. During each time interval,
we perform three operations; for example, during the time
interval in which is used, we recompute and using the
pseudorandom function, and compute . The next
time interval, we compute and .

We can now compute the true calculation and storage cost
for the hash tree that we use in TIK. Let be the depth of the
entire tree, and let be the depth of the part of the tree that
is recomputed on demand. The initial computation of the tree
requires evaluations of the PRF, and evaluations
of the hash function. This initial computation can be done offline
and is not time-critical. To choose , we consider the value of
that minimizes the total storage needed for the tree. Since total
storage is given by , storage for the
tree is minimized when

TABLE I
NOTATION USED IN TIK

The optimal choice for is , and the total storage require-
ment for the tree is . This represents
a storage requirement of just . For example, a tree of
depth 34 requires only 2.5 MB to store, much smaller than the
full tree size of 170 GB; once the tree is generated, it can be
used at a cost of three operations per time interval.

A similar approach can be taken for the generation of future
hash trees. That is, once a single hash tree has been generated,
each future hash tree can be generated while the current one is
used, for a cost of three hash functions per time interval plus
total storage space for the tree of .
Only the root of each new tree needs to be distributed, and as
mentioned in Section III, these values can be distributed using
only symmetric-key cryptography [29], noncryptographic ap-
proaches [37], or by sending them using the current hash tree
for authentication.

C. TIK Protocol Description

Our TIK protocol implements temporal leashes and provides
efficient instant authentication for broadcast communication in
wireless networks. TIK stands for TESLA with instant key dis-
closure, and is an extension of the TESLA broadcast authenti-
cation protocol [28]. The intuition behind TIK is that the packet
transmission time can be significantly longer than the time syn-
chronization error. In these cases, the a receiver can verify the
TESLA security condition (that the corresponding key has not
yet been disclosed) as it receives the packet (explained below);
this fact allows the sender to disclose the key in the same packet,
thus motivating the protocol name “TESLA with instant key dis-
closure.”

TIK implements a temporal leash and, thus, enables the re-
ceiver to detect a wormhole attack. TIK is based on efficient
symmetric cryptographic primitives (a message authentication
code is a symmetric cryptographic primitive). TIK requires ac-
curate time synchronization between all communicating par-
ties, and requires each communicating node to know just one
public value for each sender node, thus enabling scalable key
distribution.

We now describe the different stages of the TIK protocol in
detail: sender setup, receiver bootstrapping, and sending and
verifying authenticated packets. The notation used in this sec-
tion is summarized in Table I.

HU et al.: WORMHOLE ATTACKS IN WIRELESS NETWORKS 375

Fig. 2. Timing of a packet in transmission using TIK.

1) Sender Setup: The sender uses a pseudorandom function
(PRF) [11] and a secret master key to derive a series of
keys , where . The main advan-
tage of this method of key generation is that the sender can
efficiently access the keys in any order. Assuming the PRF is
secure, it is computationally intractable for an attacker to find
the master secret key , even if all keys are
known. Without the secret master key , it is computationally
intractable for an attacker to derive a key that the sender has
not yet disclosed. To construct the PRF function , we can use
a pseudorandom permutation, i.e., a block cipher [12], or a mes-
sage authentication code, such as HMAC [4].

The sender selects a key expiration interval and, thus, deter-
mines a schedule with which each of its keys will expire. Specif-
ically, key expires at time , key expires at time

, and key expires at time .
The sender constructs the Merkle hash tree we describe in

Section V-B to commit to the keys . The root
of the resulting hash tree is , or simply . The value

commits to all keys and is used to authenticate any leaf key
efficiently. As we describe in Section V-B, in a hash tree with

levels, verification requires only hash function
computations (in the worst case, not considering buffering), and
the authentication information consists of values.

2) Receiver Bootstrapping: We assume that all nodes have
synchronized clocks with a maximum clock synchronization
error of . We further assume that each receiver knows every
sender’s hash tree root , and the associated parameters and

. This information is sufficient for the receiver to authenticate
any packets from the sender.

3) Sending and Verifying Authenticated Packets: To achieve
secure broadcast authentication, it must not be possible for a re-
ceiver to forge authentication information for a packet. When
the sender sends a packet , it estimates an upper bound
on the arrival time of the HMAC at the receiver. Based on this
arrival time, the sender picks a key that will not have ex-
pired when the receiver receives the packet’s HMAC

. The sender attaches the HMAC to the packet, com-
puted using key , and later discloses the key itself, along
with the corresponding tree authentication values (as discussed
in Section V-B), after the key has expired.

Because of the time synchronization, the receiver can verify
after receiving the packet that the key used to compute the

authentication has not yet been disclosed, since the receiver
knows the expiration time for each key and the sender only dis-
closes the key after it expires; thus, no attacker can know and,
therefore, if the packet authentication verifies correctly once the
receiver later receives the authentic key , the packet must
have originated from the claimed sender. Even another receiver
could not have forged a new message with a correct message
authentication code, since only the sender knew the key at
the time that the receiver received the packet. After the key

expires at time , the sender then discloses key (and the
corresponding tree authentication values); once the receiver gets
the authentic key , it can authenticate all packets that carry a
message authentication code computed with . This use of de-
layed key disclosure and time synchronization for secure broad-
cast authentication was also used by the TESLA protocol [28].

The above protocol has the drawback that message authen-
tication is delayed; the receiver must wait for the key before it
can authenticate the packet. We observe that we can remove the
authentication delay in an environment in which the nodes are
tightly time synchronized. In fact, the sender can even disclose
the key in the same packet that carries the corresponding mes-
sage authentication code.

Fig. 2 shows the sending and receiving of a TIK packet. The
figure shows the sender’s and receiver’s timelines, which may
differ by a value of up to the maximum time synchronization
error . The time here is the time at which the sender be-
gins transmission of the packet, and time is the disclosure
time for key . The packet contains four parts: a message au-
thentication code (shown as HMAC in Fig. 2), a message pay-
load (shown as), the tree authentication values necessary to
authenticate (shown as), and the key used to generate the
message authentication code (shown as). The TIK packet is
transmitted by as

where the destination may be unicast or broadcast. After the
receiver receives the HMAC value, it verifies that the sender
did not yet start sending the corresponding key , based on
the time and the synchronized clocks. If the sender did not
yet start sending , the receiver verifies that the key at the
end of the packet is authentic (using the hash tree root and
the hash tree values), and then uses to verify the HMAC

376 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 2, FEBRUARY 2006

value in the packet. If all these verifications are successful, the
receiver accepts the packet as authentic.

The TIK protocol already provides protection against the
wormhole attack, since an attacker who retransmits the packet
will most likely delay it long enough that the receiver will
reject the packet because the corresponding key has already
expired and the sender may have disclosed it. However, we can
also add an explicit expiration timestamp to each packet for the
temporal leash, and use TIK as the authentication protocol. For
example, each packet could include a 64-bit timestamp with
nanosecond resolution, allowing over 580 years of use starting
from the epoch. Since the entire packet is authenticated, the
timestamp is authenticated.

A policy could be set allowing the reception of packets for
which the perceived transmission delay, i.e., the arrival time
minus the sending timestamp, is less than some threshold. That
threshold could be chosen anywhere between and ,
where the more conservative approach of never allows
tunnels but rejects some valid packets, and the more liberal ap-
proach of never rejects valid packets, but may allow tun-
neling of up to past the actual normal transmission range.

With a GPS-disciplined clock [39], time synchronization to
within ns with probability is possible. If
a transmitter has a 250 m range, the threshold accepts
all packets sent less than 140 m and some packets sent between
140 and 250 m; the threshold accepts all packets sent less
than 250 m but allows tunneling of packets up to 110 m beyond
that distance.

D. MAC Layer Considerations

A time-division multiple-access (TDMA) MAC protocol may
be able to choose the time at which a frame begins transmission,
so that the message authentication code is sent by time

. In this case, the minimum payload length is times
the bit rate of transmission. For additional efficiency, different
nodes should have different key disclosure times, and the MAC
layer should provide each node with the MAC layer time slot it
needs for authenticated delivery.

As mentioned in Section V-C, a carrier sense multiple-access
(CSMA) MAC protocol may not be able to control that time at
which a frame is sent relative to the key disclosure times. In this
case, the minimum payload length needs to be chosen so that
a key disclosure time is guaranteed to occur somewhere during
the packet’s transmission. For example, if the network physical
layer is capable of a peak data rate of 100 Mb/s and a range of
150 m, and if the key disclosure interval is chosen to be 25 s
and time synchronization is achieved to within 250 ns, then the
minimum packet size must be at least 325 bytes. However, if
each value in the hash tree is 80 bits long, and the depth of the
tree is 31, then the minimum payload size is just 15 bytes.

If a MAC protocol uses a request-to-send/clear-to-send
(RTS/CTS) frame handshake, the minimum packet size can be
reduced by carrying the message authentication code inside the
RTS frame. In this case, the frame exchange for transmitting a
data packet would be

In particular, instead of having a minimum message size of
times the transmission data rate, where is

the duration of a time interval, the minimum message size is
just times the data rate, where is the min-
imum allowed time between receiving a control frame (i.e., the
RTS or CTS) and returning a corresponding frame (the CTS or
DATA frame, respectively). This minimum message length in-
cludes the length of the CTS, DATA header, payload, and hash
tree values.

VI. EVALUATION

A. TIK Performance

To evaluate the suitability of our work for use in ad hoc net-
works, we measured computational power and memory cur-
rently available in mobile devices. To measure the number of
repeated hashes that can be computed per second, we optimized
the MD5 hash code from Information Sciences Institute (ISI)
[38] to achieve maximum performance for repeated hashing.

Our optimized version performs 10 million hash function
evaluations in 7.544 s on a Pentium III running at 1 GHz,
representing a rate of 1.3 million hashes per second; the same
number of hashes using this implementation on a Compaq
iPAQ 3870 PocketPC running Linux took 45 s, representing a
rate of 222 000 hashes per second. Repetitive, simple functions
like hashes can also be efficiently implemented in hardware;
Helion Technology [13] claims a 20 k gate ASIC core design
(a third the complexity of Bluetooth [3] and less than a third
the complexity of IEEE 802.11 [19]) capable of more than 1.9
million hashes per second and a Xilinx FPGA design using
1650 LUT’s capable of 1 million hashes per second. In terms of
memory consumption, existing handheld devices, such as the
iPAQ 3870, come equipped with 32 MB of Flash and 64 MB
of RAM. Modern notebooks can generally be equipped with
hundreds of megabytes of RAM.

A high-end wireless LAN card such as the Proxim Harmony
802.11a [32] has a transmission range potentially as far as
250 m and data rate as high as 108 Mb/s. With time synchro-
nization provided by a Trimble Thunderbolt GPS-Disciplined
Clock [39], the synchronization error can be as low as 183 ns
with probability . If authentic keys are reestablished
every day, with a 20-byte minimum packet size and an 80-bit
message authentication code length, the tree has depth 33,
giving a minimum payload length of 350 bytes (a transmission
time of 25.9 s) and a time interval of 24.7 s. Assuming that
the node generates each new tree while it is using its current
tree, it requires 8 MB of storage and needs to perform fewer than
243 000 operations per second to maintain and generate trees.
To authenticate a received packet, a node needs to perform only
33 hash functions. To keep up with link-speed, a node needs to
verify a packet at most every 25.9 s, thus requiring 1 273 000
hashes per second, for a total computational requirement of
1 516 000 hashes per second. This can be achieved today in
hardware, either by placing two MD5 units on a single FPGA,
or with an ASIC. Many laptops today are equipped with at
least 1.2 GHz Pentium III CPU’s, which should also be able to
perform 1.5 million hash operations per second.

Current commodity wireless LAN products such as com-
monly used IEEE 802.11b cards [2] provide a transmission

HU et al.: WORMHOLE ATTACKS IN WIRELESS NETWORKS 377

data rate of 11 Mb/s and a range of 250 m. Given the same
time synchronization, rekeying interval, minimum packet size,
and message authentication code length, the tree has depth 30,
giving a minimum payload length of 320 bytes (a transmission
time of 232 s) and a time interval of 231.5 s. Assuming that
the node generates each new tree while it is using its current
tree, it requires just 2.6 megabytes of storage and needs to
perform just 26 500 operations per second. To authenticate a
received packet, a node needs to perform only 30 hash func-
tions. Since any IP packet authenticated using TIK would take
at least 232 sto transmit in this example, TIK can authenticate
packets at link-speed using just 13 000 hashes per second, for a
total of 39 500 hash functions per second, which is well within
the capability of an iPAQ, with 82.2% of its CPU time to spare.

In a sensor network such as Hollar et al.’s weC mote [18],
[41], nodes may only be able to achieve time synchronization
accurate to 1 s, have a 19.6 kb/s link speed, and 20 m range.
In this case, the smallest packet that can be authenticated is
4900 bytes; since the weC mote does not have sufficient memory
to store this packet, TIK is unusable in such a resource-scarce
system. Furthermore, the level of time synchronization in this
system is such that TIK could not provide a usable wormhole
detection system.

B. Security Analysis

Packet leashes provide a way for a sender and a receiver to en-
sure that a wormhole attacker is not causing the signal to prop-
agate farther than the specified normal transmission distance.
When geographic leashes are used, nodes also detect tunneling
across obstacles such as mountains that are otherwise impene-
trable by radio. As with other cryptographic primitives, a ma-
licious receiver can refuse to check the leash, just like a mali-
cious receiver can refuse to check the authentication on a packet.
This may allow an attacker to tunnel a packet to another attacker
without detection; however, that second attacker cannot then re-
transmit the packet as if it were the original sender without then
being detected.

A malicious sender can claim a false timestamp or location,
causing a legitimate receiver to have mistaken beliefs about
whether or not the packet was tunneled. When geographic
leashes are used in conjunction with digital signatures, nodes
may be able to detect a malicious node and spread that infor-
mation to other nodes, as discussed in Section IV-C. However,
this attack is equivalent to the malicious sender sharing its
keys with the wormhole attacker, allowing the sending side
of the wormhole to place appropriate timestamps or location
information on any packets sent by the malicious sender that
are then tunneled by the wormhole attacker. Moreover, if a
malicious or compromised node embeds a future timestamp
into the packet to extend its lifetime (in the case of temporal
leashes), neighboring nodes can detect such fraudulent packets
and blacklist the node.

C. Comparison Between Geographic and Temporal Leashes

Temporal leashes have the advantage of being highly effi-
cient, especially when used with TIK, as described in Section V.
Geographic leashes, on the other hand, require a more gen-
eral broadcast authentication mechanism, which may result in

Fig. 3. These two network topologies are not distinguishable by topology-
based wormhole detection, yet one contains a wormhole and the other does not.
The dotted line in the figure on the left represents the wormhole.

increased computational and network overhead. Location in-
formation also may require more bits to represent, further in-
creasing the network overhead.

Geographic leashes have the advantage that they can be used in
conjunction with a radio propagation model, thus allowing them
to detect tunnels through obstacles. Furthermore, geographic
leashes do not require the tight time synchronization that tem-
poral leashes do. In particular, temporal leashes cannot be used if
the maximum range is less than , where is the speed-of-light
and is maximum clock synchronization error; geographic
leashes can be used until the maximum range is less than ,
where is the maximum movement speed of any node.

To evaluate the practicality of geographic leashes, we con-
sider a radio of range 300 m, maximum movement speed of
50 m/s, a relative positioning error of 3 m, and time synchro-
nization error of 1 ms. Then, ms, since the propaga-
tion time is at most 1 ms and the time synchronization error is
at most 1 ms. Then, m/s ms m

m. Since could be as much as 3 m, the
effective transmission range of the network interface is reduced
by at most 6.2 m.

To compare the effectiveness of geographic leashes and tem-
poral leashes, we compare the distance derived using each ap-
proach: for geographic
leashes and for temporal leashes. We
use to denote the maximum propagation time. Then, the
maximum error is bounded by

for geographic leashes, and by
for temporal leashes. Geographic leashes are then more effec-
tive when . In general, is much
smaller than . Given sufficient computing power and network
bandwidth, geographic leashes should be used when ,
and temporal leashes should be used when .

D. Security of Topology-Based Approaches

Several researchers [31], [40] have proposed a method to
detect wormholes by constructing a model of the network
topology based on inaccurate distance measurements between
neighbor nodes that can receive packets from each other (pos-
sibly through a wormhole); wormholes can then be visualized
in this topology by the anomalies they introduce, bending
the topology so that the nodes on either side of the worm-
hole appear closer together. However, such topology-based
approaches alone cannot detect all wormholes. For example,
the two network topologies in Fig. 3 are indistinguishable, yet

378 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 2, FEBRUARY 2006

one contains a wormhole and the other does not. In addition, a
wormhole that can decode packets can choose to tunnel only
traffic between two select nodes over a short distance; such
wormholes have a minimal impact on network topology and
may not be easily detected by such approaches.

VII. RELATED WORK

Hu and Evans propose to use directional antennas to detect
wormhole attacks [14]. Their approach uses a periodic HELLO
message to determine the direction to each neighbor. When two
nodes and wish to communicate, they find a correctly po-
sitioned verifier which ensures that the directions toward
and are consistent. Their approach is promising; however,
it relies on perfectly aligned, completely directional antennas,
and cannot detect all wormhole instances, especially those using
more than one wormhole.

Wang et al. note that the wormhole attack is potentially
more powerful when the attacker has compromised one or
more nodes. In particular, they distinguish between open,
half-open, and closed wormholes. In this paper, we focus
on open wormholes, where the wormhole does not participate
in higher layer protocols (such as routing). In a half-open
wormhole, one end of the wormhole participates in a higher
layer protocol, and may attempt to conceal the existence of
the wormhole. Finally, in a closed wormhole, both ends of the
wormhole participate in the higher layer protocol. Our mech-
anisms allow a higher layer protocol to detect the presence
of open wormholes; additional mechanisms within that higher
layer protocol are required in order to prevent use of half-open
and closed wormholes.

Radio frequency (RF) watermarking [9] is another possible
approach to providing the security described in this paper. RF
watermarking authenticates a wireless transmission by modu-
lating the RF waveform in a way known only to authorized
nodes. RF watermarking relies on keeping secret the knowledge
of which RF waveform parameters are being modulated; fur-
thermore, if that waveform is exactly captured at the receiving
end of the wormhole and exactly replicated at the transmitting
end of the wormhole, the signal level of the resulting watermark
is independent of the distance it was tunneled. In addition, since
we are aware of no published specific details, it is difficult to
assess its security. If the radio hardware is kept secret, such as
through tamper-resistant modules, some level of security can be
provided against compromised nodes; however, if the radio band
in which communications are taking place is known, then an at-
tacker can attempt to tunnel the entire signal from one location
to another.

It may be possible to modify existing intrusion detection ap-
proaches to detect a wormhole attacker; since the packets sent
by the wormhole are identical to the packets sent by legitimate
nodes, such detection would more easily be achieved jointly
with hardware able to specify some sort of direction of arrival
information for received packets. To the best of our knowledge,
no work has been published regarding the possibility of using
intrusion detection systems specifically to detect wormhole
attackers.

Brands and Chaum [6] propose a three-way handshake which
bounds the distance between a node and a verifier by measuring
the round trip time between them. Our technique is able to detect
wormholes with only a single message, and requires corrections
for clock skew between the sender and receiver.

TESLA generally chooses longer time intervals than TIK
does, in order to reduce the amount of computation needed to
authenticate a new key. As a result, TESLA is capable of func-
tioning with much looser time synchronization than is required
by TIK. Given a sufficient level of time synchronization, TIK
provides an advantage over hop-by-hop authentication with
TESLA, with respect to latency and packet overhead, but it
suffers with respect to byte overhead. In particular, since TIK
key disclosure always occurs in the same packet as the data
protected, packets can be verified instantly; with TESLA, on
the other hand, packets must wait, on average 1.5 time intervals,
which is especially significant when packets are authenticated
hop-by-hop, as may be required in a multihop ad hoc network
routing protocol.

Some medium access control protocols also specify privacy
and authenticity mechanisms. These mechanisms typically use
one or more shared keys, allowing compromised nodes to forge
packets. Furthermore, to the best of our knowledge, none of
these mechanisms protect against wormhole attacks.

VIII. CONCLUSION

In this paper, we have introduced the wormhole attack, a pow-
erful attack that can have serious consequences on many pro-
posed ad hoc network routing protocols; the wormhole attack
may also be exploited in other types of networks and applica-
tions, such as wireless access control systems based on physical
proximity. To detect and defend against the wormhole attack,
we introduced packet leashes, which may be either geographic
or temporal leashes, to restrict the maximum transmission dis-
tance of a packet. Finally, to implement temporal leashes, we
presented the design and performance analysis of a novel, effi-
cient protocol, called TIK, which also provides instant authen-
tication of received packets.

TIK requires just public keys in a network with nodes,
and has relatively modest storage, per packet size, and compu-
tation overheads. In particular, a node needs to perform only be-
tween three and six hash function evaluations per time interval
to maintain up-to-date key information for itself, and roughly 30
hash functions for each received packet. With commodity hard-
ware such as 11 Mb/s wireless links, TIK has computational and
memory requirements that are easily satisfiable today; 2.6 MB
for hash tree storage represents, for example, less than 3% of the
standard memory on an Compaq iPAQ 3870 with no external
memory cards, and since the StrongARM CPU on the iPAQ is
capable of performing 222 000 symmetric cryptographic opera-
tions per second, TIK imposes no more than an 18% load on
CPU time, even when flooded with packets at the maximum
speed of the wireless network, and normally uses less CPU load
than that in normal operation.

When used in conjunction with precise timestamps and tight
clock synchronization, TIK can prevent wormhole attacks that
cause the signal to travel a distance longer than the nominal

HU et al.: WORMHOLE ATTACKS IN WIRELESS NETWORKS 379

range of the radio, or any other range that might be specified.
Sufficiently tight clock synchronization can be achieved in a
wireless LAN using commercial GPS receivers [39], and wire-
less MAN technology could be sufficiently time-synchronized
using either GPS or LORAN-C [24] radio signals.

A MAC layer protocol using TIK efficiently protects against
replay, spoofing, and wormhole attacks, and ensures strong
freshness. TIK is implementable with current technologies, and
does not require significant additional processing overhead at
the MAC layer, since the authentication of each packet can be
performed on the host CPU.

Our geographic leashes are less efficient than temporal
leashes, since they require broadcast authentication, but they
can be used in networks where precise time synchronization is
not easily achievable. The dominant factor in the usability of
geographic leashes is the ability to accurately measure location;
because node movement is very slow relative to the speed-of-
light, the effects of reduced time synchronization accuracy are
slight.

REFERENCES

[1] N. Abramson, “The ALOHA system—another alternative for computer
communications,” in Proc. Fall 1970 AFIPS Comput. Conf., Nov. 1970,
pp. 281–285.

[2] Specification sheet for ORiNOCO world PC card, Agere Systems
Inc. [Online]. Available: ftp://ftp.orinocowireless.com/pub/docs/
ORINOCO/BROCHURES/US/World%20PC%20Card%20US.pdf

[3] ARC releases blueForm, a comprehensive solution for bluetooth sys-
tems on a chip, ARC International. (2001, June 4). [Online]. Available:
http://www.arccores.com/newsevents/PR/6-04-01-2.htm

[4] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions for
message authentication,” in Lecture Notes in Computer Science, N.
Koblitz, Ed. Berlin, Germany: Springer-Verlag, 1996, vol. 1109, Proc.
Advances in Cryptology—CRYPTO, pp. 1–15.

[5] B. Bellur and R. G. Ogier, “A reliable, efficient topology broadcast
protocol for dynamic networks,” in Proc. 18th Ann. Joint Conf. IEEE
Comput. Commun. Soc., Mar. 1999, pp. 178–186.

[6] S. Brands and D. Chaum, “Distance-bounding protocols,” in Lecture
Notes in Computer Science, vol. 839, Proc. Workshop Theory and Appl.
Cryptographic Techniques on Advances in Cryptology—CRYPTO.
Berlin, Germany, Aug. 1994, pp. 344–359.

[7] Tom Clark’s totally accurate clock FTP site, T. Clark. [Online]. Avail-
able: ftp://aleph.gsfc.nasa.gov/GPS/totally.accurate.clock/

[8] M. Corner and B. Noble, “Zero-interaction authentication,” in Proc. 8th
Ann. Int. Conf. Mobile Comput. Net., Sept. 2002, pp. 1–11.

[9] Frequently asked questions v4 for BAA 01-01, FCS communica-
tions technology, Defense Advanced Research Projects Agency.
(2000, Oct.). [Online]. Available: http://www.darpa.mil/ato/solicit/
baa01_01faqv4.doc

[10] Y. Desmedt, “Major security problems with the “unforgeable” Feige-
Fiat-Shamir proofs of identity and how to overcome them,” in Proc. 6th
Worldwide Comput. Cong. Comput. Commun. Security and Protection,
Mar. 1998, pp. 147–159.

[11] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random
functions,” J. ACM, vol. 33, no. 4, pp. 792–807, Oct. 1986.

[12] S. Goldwasser and M. Bellare, “Lecture Notes on Cryptography,”
Summer course “Cryptography and computer security” at MIT,
1996–1999, Aug, 1999.

[13] Helion Technology Ltd. High performance solutions in silicon—MD5
core, Cambridge, U.K. [Online]. Available: http://www.heliontech.
com/core5.htm

[14] L. Hu and D. Evans, “Using directional antennas to prevent wormhole
attacks,” in Proc. Symp. Netw. Distrib. Syst. Security, Feb. 2004.

[15] J.-P. Hubaux, L. Buttyán, and S. Čapkun, “The quest for security in
mobile ad hoc networks,” in Proc. ACM Symp. Mobile Ad Hoc Netw.
Comput., Oct. 2001, pp. 146–155.

[16] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc
wireless networks,” in Mobile Computing, T. Imielinski and H. Korth,
Eds. Norwell, MA: Kluwer, 1996, ch. 5, pp. 153–181.

[17] D. B. Johnson, D. A. Maltz, and J. Broch, “The dynamic source
routing protocol for multihop wireless ad hoc networks,” in Ad
Hoc Networking. Reading, MA: Addison-Wesley, 2001, ch. 5, pp.
139–172.

[18] J. M. Kahn, R. H. Katz, and K. S. J. Pister, “Next century challenges:
mobile networking for smart dust,” in Proc. 5th Ann. Int. Conf. Mobile
Compu. Netw., Aug. 1999, pp. 271–278.

[19] D. Kawaguchi and S. Vesuna. (1998, Sep.) Symbol Technologies, Inc.
automates system-to-gates design flow for wireless LAN ASIC with
COSSAP and behavioral compiler, Mountain View, CA. [Online]. Avail-
able: http://www.synopsys.com/news/pubs/bctb/sep98/frame_art1.html

[20] T. Kindberg, K. Zhang, and N. Shankar, “Context authentication using
constrained channels,” in Proc. 4th IEEE Workshop on Mobile Comput.
Syst. Appl., Jun. 2002, pp. 14–21.

[21] S. Knappe, L. Liew, V. Shah, P. Schwindt, J. Moreland, L. Hollberg, and
J. Kitching, “A microfabricated atomic clock,” Appl. Phy. Lett., vol. 85,
no. 9, pp. 1460–1462, Aug. 2004.

[22] J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, “Providing robust and
ubiquitous security support for mobile ad-hoc networks,” in Proc. 9th
Int. Conf. Netwo. Protocols, Nov. 2001, pp. 251–260.

[23] R. Merkle, “Protocols for public key cryptosystems,” in Proc. IEEE
Symp. Res. Security and Privacy, Apr. 1980, pp. 122–136.

[24] D. L. Mills, “A computer-controlled LORAN-C receiver for precision
timekeeping,” Dept. Elect. Comput. Eng., Univ. Delaware, Newark, DE,
Tech. Rep. 92-3-1, Mar. 1992.

[25] , “A precision radio clock for WWV transmissions,” Dept. Elect.
Comput. Eng., Univ. Delaware, Newark, DE, Tech. Rep. 97-8-1, Aug.
1997.

[26] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-se-
quenced distance-vector routing (DSDV) for mobile computers,” in
Proc. Conf. Commun. Architect., Protocols, Appl., Aug. 1994, pp.
234–244.

[27] C. E. Perkins and E. M. Royer, “Ad-hoc on-demand distance vector
routing,” in Proc. 2nd IEEE Workshop on Mobile Comput. Syst. Appl.,
Feb. 1999, pp. 90–100.

[28] A. Perrig, R. Canetti, D. Tygar, and D. Song, “Efficient authentication
and signature of multicast streams over lossy channels,” in Proc. IEEE
Symp. Res. Security and Privacy, May 2000, pp. 56–73.

[29] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, “SPINS: Se-
curity protocols for sensor networks,” in Proc. 7th Ann. Int. Conf. Mobile
Comput. Netw., Jul. 2001, pp. 189–199.

[30] R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, “Theory of spread
spectrum communications—A tutorial,” IEEE Trans. Commun., vol. 30,
no. 5, pp. 855–884, May 1982.

[31] R. Poovendran and L. Lazos, “A graph theoretic framework for pre-
venting the wormhole attack in wireless ad hoc networks,” ACM Wire-
less Netw., to be published.

[32] Proxim, Inc. Data sheet for proxim harmony 802.11a cardbus card,
Sunnyvale, CA. [Online]. Available: http:// www.proxim.com/prod-
ucts/all/harmony/docs/ds/harmony_11a_cardbus.pdf

[33] A. Qayyum, L. Viennot, and A. Laouiti, “Multipoint relaying: An
efficient technique for flooding in mobile wireless networks,” INRIA,
Project HIPERCOM, Tech. Rep. Res. Rep. RR-3898, Feb. 2000.

[34] R. L. Rivest, A. Shamir, and L. M. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM, vol.
21, no. 2, pp. 120–126, Feb. 1978.

[35] C. P. Schnorr, “Efficient signature generation by smart cards,” J. Cryp-
tology, vol. 4, no. 3, pp. 161–174, 1991.

[36] K. E. Sirois and S. T. Kent, “Securing the nimrod routing architecture,”
in Proc. Symp. Netw. Distrib. Syst. Security, Feb. 1997, pp. 74–84.

[37] F. Stajano and R. Anderson, “The resurrecting duckling: Security issues
for ad-hoc wireless networks,” in Proc. 7th Int. Workshop Security Pro-
tocols, Berlin, Germany, 1999.

[38] J. D. Touch, “Performance analysis of MD5,” in Proc. ACM Conf. Appl.,
Technol., Architectures, Protocols Comput. Commun., Aug. 1995, pp.
77–86.

[39] Trimble Navigation Limited. Data sheet and specifications for trimble
thunderbolt GPS disciplined clock, Sunnyvale, CA. [Online]. Available:
http://www.trimble.com/thunderbolt.html

[40] W. Wang and B. Bhargava, “Visualization of wormholes in sensor
networks,” in Proc. ACM Workshop Wireless Security, Oct. 2004, pp.
51–60.

[41] A. Woo. CS294-8 deeply networked systems mote documentation
and development information, Berkeley, CA. [Online]. Available:
http://www.cs.berkeley.edu/~awoo/smartdust/

[42] L. Zhou and Z. J. Haas, “Securing ad hoc networks,” IEEE Netw. Mag.,
vol. 13, no. 6, pp. 24–30, Nov./Dec. 1999.

380 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 2, FEBRUARY 2006

Yih-Chun Hu (M’05) received the B.S. degree in
computer science and pure mathematics from the
University of Washington, Seattle, in 1997 and the
Ph.D. degree in computer science from Carnegie
Mellon University, Pittsburg, PA, in 2003.

He is an Assistant Professor in the Department of
Electrical and Computer Engineering, University of
Illinois at Urbana–Champaign, Urbana. In his thesis
work at Carnegie Mellon Univerity, he focused on se-
curity and performance in wireless ad hoc networks.
After receiving the Ph.D. degree, he worked as a Post-

doctoral Researcher at the University of California, Berkeley, doing research in
the area of network security. His research interests include systems and network
security.

Adrian Perrig (M’96) received the B.Sc. degree
in computer engineering from the Swiss Federal
Institute of Technology, Lausanne (EPFL), in 1997,
the M.S. and Ph.D. degrees in computer science from
Carnegie Mellon University, Pittsburg, PA, in 1999
and 2001, respectively, and spent three years during
his Ph.D. degree at the University of California,
Berkeley.

He is an Assistant Professor of Electrical and
Computer Engineering, Engineering and Public
Policy, and Computer Science at Carnegie Mellon

University. His research interests revolve around building secure systems and
include Internet security, security for sensor networks, and mobile applications.

David B. Johnson (M’00) is an Associate Professor
of Computer Science and Electrical and Computer
Engineering at Rice University, Houston, TX. Prior
to joining the faculty at Rice University in 2000, he
was an Associate Professor of Computer Science at
Carnegie Mellon University, Pittsburg, PA, where
he had been on the faculty for eight years. He is
leading the Monarch Project, developing adaptive
networking protocols and architectures to allow truly
seamless wireless and mobile networking. He has
also been very active in the Internet Engineering

Task Force (IETF), the principal protocol standards development body for the
Internet; he was one of the main designers of the IETF Mobile IP protocol for
IPv4 and was the primary designer of IETF Mobile IP for IPv6, and his group’s
dynamic source routing protocol (DSR) for ad hoc networks has been approved
by the IETF to be published as an experimental protocol for the Internet.

Prof. Johnson is the Chair of SIGMOBILE, the ACM Special Interest Group
on Mobility of Systems, Users, Data, and Computing, and was previously
the Treasurer of SIGMOBILE for the past seven years. He has served as the
General Chair for MobiCom 2003 and Technical Program Chair for VANET
2005, MobiHoc 2002, and MobiCom 1997. He has also been a member of
the Technical Program Committee for over 35 international conferences and
workshops. He has been an Editor for the journals Ad Hoc Networks, IEEE
Pervasive Computing, IEEE/ACM TRANSACTIONS ON NETWORKING, ACM
Wireless Networks, ACM Mobile Networks and Applications, and ACM Mobile
Computing and Communications Review.

	toc
	Wormhole Attacks in Wireless Networks
	Yih-Chun Hu, Member, IEEE, Adrian Perrig, Member, IEEE, and Davi
	I. I NTRODUCTION
	II. P ROBLEM S TATEMENT
	III. A SSUMPTIONS, N OTATION, AND A TTACKER M ODEL
	IV. D ETECTING W ORMHOLE A TTACKS
	A. Geographical Leashes
	B. Temporal Leashes
	C. Discussion

	V. T EMPORAL L EASHES AND THE TIK P ROTOCOL
	A. Temporal Leash Construction Details
	B. Tree-Authenticated Values
	1) Hash Tree: To authenticate the sequence of values $v_{0},v_{1

	Fig.€1. Merkle hash tree.
	2) Hash Tree Optimization: In TIK, the depth of the hash tree ca

	TABLE€I N OTATION U SED IN TIK
	C. TIK Protocol Description

	Fig.€2. Timing of a packet in transmission using TIK.
	1) Sender Setup: The sender uses a pseudorandom function (PRF) [
	2) Receiver Bootstrapping: We assume that all nodes have synchro
	3) Sending and Verifying Authenticated Packets: To achieve secur
	D. MAC Layer Considerations
	VI. E VALUATION
	A. TIK Performance
	B. Security Analysis
	C. Comparison Between Geographic and Temporal Leashes

	Fig.€3. These two network topologies are not distinguishable by
	D. Security of Topology-Based Approaches
	VII. R ELATED W ORK
	VIII. C ONCLUSION
	N. Abramson, The ALOHA system another alternative for computer c
	Specification sheet for ORiNOCO world PC card, Agere Systems Inc
	ARC releases blueForm, a comprehensive solution for bluetooth sy
	M. Bellare, R. Canetti, and H. Krawczyk, Keying hash functions f
	B. Bellur and R. G. Ogier, A reliable, efficient topology broadc
	S. Brands and D. Chaum, Distance-bounding protocols, in Lecture
	Tom Clark's totally accurate clock FTP site, T. Clark . [Online]
	M. Corner and B. Noble, Zero-interaction authentication, in Proc
	Frequently asked questions v4 for BAA 01-01, FCS communications
	Y. Desmedt, Major security problems with the unforgeable Feige-F
	O. Goldreich, S. Goldwasser, and S. Micali, How to construct ran
	S. Goldwasser and M. Bellare, Lecture Notes on Cryptography, Sum
	Helion Technology Ltd . High performance solutions in silicon MD
	L. Hu and D. Evans, Using directional antennas to prevent wormho
	J.-P. Hubaux, L. Buttyán, and S. Čapkun, The quest for security
	D. B. Johnson and D. A. Maltz, Dynamic source routing in ad hoc
	D. B. Johnson, D. A. Maltz, and J. Broch, The dynamic source rou
	J. M. Kahn, R. H. Katz, and K. S. J. Pister, Next century challe
	D. Kawaguchi and S. Vesuna . (1998, Sep.) Symbol Technologies, I
	T. Kindberg, K. Zhang, and N. Shankar, Context authentication us
	S. Knappe, L. Liew, V. Shah, P. Schwindt, J. Moreland, L. Hollbe
	J. Kong, P. Zerfos, H. Luo, S. Lu, and L. Zhang, Providing robus
	R. Merkle, Protocols for public key cryptosystems, in Proc. IEEE
	D. L. Mills, A computer-controlled LORAN-C receiver for precisio
	C. E. Perkins and P. Bhagwat, Highly dynamic destination-sequenc
	C. E. Perkins and E. M. Royer, Ad-hoc on-demand distance vector
	A. Perrig, R. Canetti, D. Tygar, and D. Song, Efficient authenti
	A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, SPIN
	R. L. Pickholtz, D. L. Schilling, and L. B. Milstein, Theory of
	R. Poovendran and L. Lazos, A graph theoretic framework for prev
	Proxim, Inc . Data sheet for proxim harmony 802.11a cardbus card
	A. Qayyum, L. Viennot, and A. Laouiti, Multipoint relaying: An e
	R. L. Rivest, A. Shamir, and L. M. Adleman, A method for obtaini
	C. P. Schnorr, Efficient signature generation by smart cards, J.
	K. E. Sirois and S. T. Kent, Securing the nimrod routing archite
	F. Stajano and R. Anderson, The resurrecting duckling: Security
	J. D. Touch, Performance analysis of MD5, in Proc. ACM Conf. App
	Trimble Navigation Limited . Data sheet and specifications for t
	W. Wang and B. Bhargava, Visualization of wormholes in sensor ne
	A. Woo . CS294-8 deeply networked systems mote documentation and
	L. Zhou and Z. J. Haas, Securing ad hoc networks, IEEE Netw. Mag

