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Abstract—We propose a physical-layer encryption scheme
inspired by Diffie’s telephone system. Instead of the usual XOR-
then-modulate encryption scheme, we propose using modulate-
then-add, and show that the decryption operation can be im-
plemented using the circuit operation of heterodyning. We then
show that a slightly modified superheterodyne receiver performs
decryption at no additional cost compared to existing receivers.

Our proposed cryptosystem is significant to the research
community for the following reasons: 1) Our physical-layer
encryption scheme uniquely outperforms other physical-layer
security protocols by guaranteeing positive conditional secrecy
capacity as long as Bob’s signal-to-interference-and-noise ratio is
above a threshold, even if Eve’s channel condition is the same or
significantly better than Bob’s or if the channel between Alice and
Bob is static; and 2) Our physical-layer encryption scheme shows
that by removing a filter that the wireless circuit community has
long considered to be necessary in the superheterodyne design,
the modified receiver offers intriguing security features.

I. INTRODUCTION

In [5], Massey described a simple cryptosystem originally

proposed by Diffie, which was never published:

Diffie’s secrecy system exploits the existence of a very large

number, 2K , of telephones that can be dialed by anyone.

Note that a K bit telephone number suffices to identify

each of these telephones. The i-th telephone, when dialed,

plays back a recorded binary sequence Ri of length N
(where N >> K) that was obtained exclusively for that

telephone by coin-tossing. The secret key Z is a K-bit

telephone number that is equally likely to be that of any

of the 2K telephones. The secret key is known to both the

sender and intended recipient, but not of course to the enemy

cryptanalyst. The system works as follows: When he wishes

to send an N -bit plaintext X to the intended recipient,

the sender dials the telephone number Z and obtains the

random sequence RZ . The sender then adds RZ to X using

component-wise modulo-two addition (just as in the L = 2
Vernam cipher) to produce the N bit cryptogram Y that he

then sends over an insecure channel to the intended recipient.

The recipient, upon receipt of Y , also dials the telephone

number Z, obtains the same random sequence RZ , and

subtracts this from Y component-wise modulo-two (which

is the same as addition) to obtain the plaintext X .

Fig. 1 illustrates Diffie’s telephone system. It is trivial to see

that Diffie’s telephone system satisfies what Maurer described
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Fig. 1: Illustration of Diffie’s proposed phone cryptosystem. In
this paper, the “+2” operator is understood to be bit-wise additive-
modulo-2 (i.e. XOR).

as conditionally provably secure [7]: without knowing Z, and

given the option to try only a small fraction of all telephone

numbers (say, ε = t/2K), then with probability 1 − ε, the

attacker gains no information on the plaintext1.

In this paper, we use the wireless channels to replace

the physical telephones in Diffie’s telephone system. We

then modify the encryption and transmission operations from

“XOR-then-modulate” to “modulate-then-add.” We call our

modified physical-layer encryption scheme, ”Diffie’s Wireless

Phone” (DWP). By employing “modulate-then-add,” we show

that the decryption operation can be implemented using a

modified superheterodyne receiver, which we overview in Sec-

tion II-C; however, the crypto lemma is no longer applicable,

and we will discuss the security concerns later in this paper.

Our proposed protocol makes the following contributions:

1) Our physical-layer encryption scheme uniquely outper-

forms other physical-layer security protocols by guar-

anteeing positive conditional secrecy capacity as long

as Bob’s signal-to-interference-and-noise ratio (SINR) is

above a threshold, even if Eve’s channel condition is

significantly better than Bob’s or if the channel between

Alice and Bob is static; and

2) Our scheme shows that by removing a filter that the

wireless circuit community has long considered to be

necessary in the superheterodyne design, the modified

receiver offers intriguing security features.

1This follows from the “Crypto Lemma” [2].
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TABLE I: List of cryptosystem-related variables

Variable Definition

X plaintext
x plain signal
Y ciphertext
y cipher signal
Z shared secret
K length of Z (in bits)
N length of X (in bits)
Ri encrypting text
ri encrypting signal
Ri,e portion of encrypting text used for encryption in Maurer’s

scheme
ri,e portion of encrypting signal used for encryption in Maurer’s

Wireless Phone scheme

TABLE II: List of communication-related variables

Variable Definition

fc carrier frequency
fLO frequency of local oscillator
fIF intermediate frequency
fIM image frequency
Cs secrecy capacity
SNRi signal-to-noise ratio observed by i
P total transmission power
W channel bandwidth between Alice and Bob
dA,B distance between A and B
α pathloss exponent
ηZ power allocated to transmit encrypting symbol, normalized

with respected to the power allocated to ciphersymbol
β scaling factor of the cipher signal

σ2
i power of the additive white Gaussian noise observed by i

II. BACKGROUND

In this section, we provide the necessary background in fully

understanding the DWP cryptosystem and the analysis of its

security. For ease of reference, we first tabulate the variables

used in this paper. Readers versed in signal processing, digital

communication, and physical-layer security can freely skip

Section II-B, Section II-C, and Section II-D, respectively.

A. Variable Nomenclature
In this paper, we refer to a string of data bits as text (e.g.

plaintext and ciphertext), and refer to modulated waveform

as signal (e.g. plain signal and cipher signal). We point out

that in the original Diffie’s phone system, which XORs-then-

modulates, the cipher signal can be demodulated to recover

the ciphertext; however, in the DWP system, which modulates-

then-adds, there is no corresponding ciphertext, and demodu-

lating the cipher signal results in nonsense. Table I and Table II

list the variables used in this paper.

B. The Heterodyne Operation
Heterodyning is the operation of mixing (multiplying) a

signal with a sinusoid, so as to move the signal to another fre-

quency band. Consider an input signal with carrier frequency

fc (i.e. s(t)e−jωct, where ωc = 2πfc), and a local oscillator

that produces a sinusoid with frequency fLO. Mixing the input

signal with the output of the local oscillator produces two

identical copies of the input signal, each halved in amplitude,

Freqfc1fc20 fLO

(a) Two input signals 2fLO apart before heterodyning

Freqfc1fc2
fIF = fc1 � fLO 

= fc2 + fLO

0 fLO fc2 � fLO fc1 + fLO

(b) Output of heterodyning the input signals with local oscillator

Fig. 2: Relationship between fc, fLO, and fIF. After heterodyning,
the triangular input signal (s2) at frequency fc2 = fIF − fLO and the
block input signal (s1) at frequency fc1 = fIF + fLO are summed
together at frequency fIF = fc1 − fLO = fc2 + fLO.

and with the new carrier frequencies equal to f ′c ∈ {fc±fLO}:(
s(t)e−jωct

)
cos(ωLOt)

=
s(t)

2

(
e−j(ωc−ωLO)t + e−j(ωc+ωLO)t

)
.

Of the two signal copies created by heterodyning, typically

only one is desired, and its carrier frequency is called the

intermediate frequency (fIF); the other copy is filtered out

before reaching other parts of the receiver system.
There are two signals on two different input frequencies,

fIF + fLO and fIF − fLO, such that heterodyning using the

same local oscillator would each produce a copy at fIF:

cos(ωLOt)×
(
s1(t)e

−j(ωIF−ωLO)t + s2(t)e
−j(ωIF+ωLO)t

)

=
s1(t) + s2(t)

2
e−jωIF t+ (1)

s1(t)

2
e−j(ωIF−2ωLO)t +

s2(t)

2
e−j(ωIF+2ωLO)t.

To illustrate, in Fig. 2a, we show a block signal s1 at fc1
and a triangular signal s2 at fc2. In Fig. 2b, we show that by

mixing the signals with frequency fLO, we can sum the two

input signals at the intermediate frequency fIF.

C. The Superheterodyne Receiver
Almost all of today’s tunable radio receivers use the su-

perheterodyne receiver design. A superheterodyne receiver,

instead of down-converting a passband signal directly to the

baseband, mixes the incoming signal with a variable-frequency

local oscillator so the center frequency of the incoming signal

is down-converted (or less commonly, up-converted) to a

fixed intermediate frequency (fIF). The signal is then down-

converted to the baseband for demodulation.
Conventionally, only one of the two signals at frequencies

fIF + fLO and fIF − fLO is desired, and a superheterodyne

receiver would need to filter out the other signal (known as the

image signal) by placing a preselector filter between the an-

tenna and the first mixer. Fig. 3 illustrates the main functional

blocks of a superheterodyne receiver. The preselector filter has

long been considered a necessity in the receiver design in order

to reject undesired image signals; we show that the removal of

this filter does not necessarily render the receiver useless, but

opens up the possibility to providing cryptographic features.
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Fig. 3: Illustration of the superheterodyne receiver
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Fig. 4: Illustration of the wiretap channel

D. Physical-Layer Security
Most prior studies concerning physical-layer security fo-

cus on analyzing the secrecy capacity – the maximum rate

achievable between Alice and Bob, two parties that wishes

to communicate with each other, such that the data yields no

information to an eavesdropper Eve. The secrecy capacity is

an on-average measure: on average, each channel use between

Alice and Bob yields some number of bits of secret data;

however, one single occasion of channel use may or may

not enable Alice and Bob to extract any secret bits. Fig. 4

illustrates the channel model between Alice, Bob, and Eve.

Wyner showed that, if the channel between Alice and Eve

is noisier than that between Alice and Bob, then Alice and

Bob enjoy a positive secrecy capacity; in Wyner’s analysis

model, the channel between Alice and Eve is referred to as

the wiretap channel [11]. Leung and Hellman showed that

if the channels are corrupted by Gaussian noise, the secrecy

capacity between Alice and Bob is simply the channel rate of

the channel between Alice and Bob minus that between Alice

and Eve [4].

The rate of an additive white Gaussian noise (AWGN)

channel can be determined by the Shannon-Hartley theorem:

capacity = W × log2 (1 + SNR) , (2)

where SNR is the signal-to-noise ratio of the output of

the channel, and W is the channel bandwidth. The secrecy

capacity between Alice and Bob given a Gaussian wiretap

channel is thus simply:

Cs = max

(
W × log2

(
1 + SNRB

1 + SNRE

)
, 0

)
,

where SNRB (SNRE) is Bob’s (Eve’s) observed signal-to-

noise ratio.

                     R1

                     R2

R2K               n

Y=X+��i,e 

(mod 2)

R1, e

R2, e

R2K, e

X

Plaintext Ciphertext Plaintext

X=Y+��i,e 

(mod 2)

R2K, e

R2, e

R1, e

Encryption Decryption

2 2 2 2 2 2

Encrypting 

Texts

Fig. 5: Block diagram of Maurer’s secure cipher.

III. RELATED WORK

A. Provable Secrecy
Massey and Ingemarsson proposed the Rip van Winkle

cipher in which Alice and Bob share a short secret key Z [6].

Alice generates a long sequence of random text R, then forms

the ciphertext Y by XORing the plaintext of length N with the

(Z +1)-th to (Z +N )-th bits of R. Alice then sends both the

ciphertext as well as the random text to Bob. Bob, knowing Z
and received both R and Y , delays R by Z, and decrypt the

ciphertext by XORing Y with the first N bits of the delayed R.

However, without knowing Z, Eve is forced to make random

guesses on what Z is, and if the guesses are incorrect, Eve

gains no information on the plaintext.

Maurer and Cachin subsequently proposed several provably-

secret ciphers based on the bounded-storage adversary

model [7], [1]. In these improved cryptosystems, Alice sends

a 2K× (T +N) matrix of random bits to Bob, where (T +N )

is the length of each encrypting text and the key Z specifies

for each row of the random text, the starting position of a

N -bit long subsequence. The bit sequences are then XORed

together to form an N -bit encryption text. Alice then encrypts

her message by XORing the message with the encryption

text. Since the attacker needs to gather all 2K pieces in

order to learn any bit of the message, the probability of

key leakage decreases exponentially with respect to K. We

illustrate Maurer’s protocol in Fig 5.

B. Physical-Layer Security
Following Wyner’s work, Maurer proposed that Alice and

Bob can use a random source and a “public discussion”

channel to agree on an information-theoretically secure private

key, so long as the public discussion channel is authenticated,

and both the channel between Alice and the random source

and the channel between Bob and the random source are
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more reliable than the channel between Eve and the random

source [8]. Maurer’s protocol exploits the fact that the channel

between Eve and the random source is the weakest, thus if

Alice and Bob can agree, using the public channel, using

only the random bits that both reliably observed, Eve likely

would suffer from errors, resulting in positive secrecy capacity.

The research community has proposed several theoretical

extensions [3], [10], [12].

With similar concept as our proposed protocol, Negi and

Goel proposed that by adding artificial noise (self-jamming),

the transmitter and the receiver can increase their secrecy

capacity [9]. Artificial noise is a double-edged sword that seeks

to increase the secrecy capacity between Alice and Bob by

degrading Eve’s channel condition more than degrading Bob’s.

Our protocol is similar to these protocols in that we are adding

noise to the plain signal to form the cipher signal; however,

we also transmit a copy of our artificial noise over a secret

channel, thereby enabling Bob to escape the adverse impact

of self-added noise.

IV. ATTACKER MODEL

Ultimately, we assume that over the plaintext duration, the

attacker can only examine and store a small fraction of all the

information over the channel between Alice and Bob. This

assumption implies all of the following three assumptions:

1) The attacker is able to simultaneously decrypt using

random signals from t << 2K channels; otherwise the

attacker has a non-negligible probability to simply search

for the key by decrypting a large number of channels.

2) The frequency-adjustment time of the attacker is non-

negligible; otherwise the attacker could search for the key

by exhaustively trying all channels in sequence.

3) The attacker’s storage or access to storage is limited.

This implication is equivalent to the standard “bounded

memory model” employed by Maurer and numerous prior

work. We added limited “access” to storage to highlight

the fact that while memory is much cheaper today than 20

years ago, the access time has not improved significantly.

V. DIFFIE’S WIRELESS PHONE

A. Diffie’s Wireless Phone
Diffie’s phone system can be generalized as a system in

which Alice and Bob communicate over 2K+1 data channels.

Instead of actual phones, we can divide a wireless frequency

spectrum into 2K +1 wireless channels. Alice then modulates

2K different random texts Ri, ∀i ∈ [1, 2K ] and send the i-th
modulated encrypting signal ri over the i-th channel. Alice

then modulates the ciphertext Y = X ⊕ RZ and sends the

cipher signal y over the last channel. Bob demodulates both

rZ and y to recover RZ and Y , respectively. Bob then XORs

RZ and Y to recover the plaintext.

We modify the above generalized Diffie’s phone system:

instead of XOR-then-modulate, we use modulate-then-add; we

call this proposed scheme Diffie’s Wireless Phone (DWP). We

first let Alice construct an encryption signal rZ , which does

y=x-�ZrZMod

X

Plaintext

Cipher Signal

Plaintext

�(	�+�Z
�Z)x

rZ (key)

r2K

r1

Demod

��

Encryption Decryption

�	�

�
�Z (key)


�2K


�1

Plain Signal

�Z
(1-�2)0.5

�

(1-�2)0.5

�
Encrypting 

Signals

Fig. 6: Block diagram of DWP.

not necessarily follow any particular distributions, i.e. it can

be a Gaussian noise-like signal or the modulated output of a

random codebook. Alice then modulates the plaintext X to get

the plain signal x, and subtracts from it a weighted version of

the encryption signal to form the cipher signal y = x− ηZrZ .

Alice then scales the encryption signal (and cipher signal) by

multiplying it with
√
1− β2 (β), and transmits it over the Z-th

(2K +1-th) channel. Alice should fill the other channels with

noise to prevent Eve from recovering the key Z by sensing

the spectrum.

Without considering the noise or pathloss, to recover the

plaintext, Bob multiplies the scaled encrypting signal on the

Z-th channel by β√
1−β2

. Bob then converts both the scaled

encrypting signal and the cipher signal to the same frequency,

sums the two signals and demodulates to recover the plaintext

X . Fig. 6 illustrates the DWP protocol.

In the original Diffie’s phone system, β2 = 1 − β2 = 0.5
and η2Z = 1. By reusing these parameters, Bob can eliminate

the first multiplication and can readily implement the DWP

cryptosystem using the superheterodyne receiver design. On

Bob’s side, let the center frequency of the k-th channel be fk.

Then by setting the intermediate frequency at fIF =
f2K+1+fZ

2 ,

the cipher signal and the encrypting signal are located at each

other’s image frequency. Thus, Bob can recover the plain

signal x at the intermediate frequency by prefiltering neither y

nor rZ , and setting fLO =
f2K+1−fZ

2 . Bob then down-converts

the output to the baseband and demodulates to recover the

plaintext X . We observe that knowing fLO is equivalent to

knowing Z. Through the rest of this paper, unless otherwise

specified, we assume the DWP decryption is implemented

using the modified superheterodyne receiver.

B. Practical Limitations of DWP
The single decryption step that is critical to successfully

recovering the plaintext is the heterodyne operation. The first

obstacle we face is that Alice and Bob’s local oscillators must

be frequency and phase synchronized. Frequency drifts and

phase incoherence both result in higher demodulation error

and lower delivery ratio.

The removal of the preselector filter also incurs some real-

life hurdles. In particular, without rejecting out-of-band noise

before all signals reach the RF amplifier, the RF power can
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saturate the analog-to-digital converter (ADC), thereby reduc-

ing the usable dynamic range of the ADC, and significantly

degrading Bob’s observed signal-to-noise ratio.
Another known physical-layer issue in wide band commu-

nication is that the RF channel characteristics vary depending

on carrier frequency because the same physical displacement

equates to different RF path lengths on different frequencies.

Thus, the encrypting signal and the cipher signal may lose

synchronization over distance regardless of the quality of

Bob’s local oscillator.
If Alice and Bob are close to each other, Bob can receive the

signals with high SNR and the signals traveled over relatively

small distance so the difference in RF paths is not significant.

That is, the physical proximity ameliorates both the degraded

ADC dynamic range and the loss in signal synchronization.

VI. EVALUATION

In this section we study the effect of frequency and phase

disagreements between Bob’s and Alice’s local oscillators. We

simulated the proposed DWP system using GNU Radio2.
In our simulations, we send a 100 kB file, modulated using

DBPSK, over an AWGN channel; the modulated output is x.

We then modulate a random binary source also using DBPSK,

and use the modulated output as the encrypting signal rZ .

We let fLO = 100 kHz. We form the baseband cipher signal

y = x− rZ , and up-convert rZ to another channel with center

frequency 2fLO. We sum the cipher signal in baseband and rZ
in passband before sending over the channel.

In our first experiment, we let Bob’s local oscillator be 0

to 1.5 Hz faster than Alice’s local oscillator, and vary the

noise level of the AWGN channel from 0 to P
4 , where P is

Alice’s total transmission power. We define the nominal SNR
to be Bob’s total received power divided by Bob’s observed

noise (SNRN =
Pdα

AB

σ2
B

); since our simulation does not take

pathloss into account, the AWGN level corresponds to nominal

SNR of infinity to 6 dB. In our second experiment, we fix the

nominal SNR of the AWGN channel to 20 dB, and let Bob’s

local oscillator be zero to a quarter period lagging in phase

compared to the received signal.
Fig. 7a shows our simulation results from the first experi-

ment. We plot a different line for each different SNR, and plot

the delivery ratio versus the offset in local oscillator frequency.

The delivery ratio is defined as

the number of bytes successfully decoded

the number of bytes transmitted (100 kB)
.

Our result shows that if Bob’s oscillator is more than 1.5 Hz

faster than Alice’s oscillator, the delivery ratio reaches 0. Addi-

tionally, low SNR intuitively also deteriorates the performance.
Fig. 7b shows our simulation results from the second

experiment. Our results show that if Bob’s oscillator is lagging

the incoming signal by less than 0.2 period, he can still

successfully receive nearly all data. However, as the phase

offset increases to around 0.25 period, the decryption operation

stops working, and the delivery ratio quickly drops to 0.

2http://gnuradio.org
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Fig. 7: Effects on delivery ratio due to imperfect local oscillator

VII. SECURITY ANALYSIS

A. Conditional Secrecy Capacity of Diffie’s Wireless Phone
With probability 1− 1

2K
, in the original Diffie’s phone sys-

tem, Eve obtains no useful information; however, in the DWP

cryptosystem, Eve obtains some information of the plaintext

due to the use of modulate-then-add. We turn to information

theory to capture the secrecy of the DWP cryptosystem.

In the original Diffie’s phone system, the secrecy capacity

simply equals the channel capacity between Alice and Bob

since Eve obtains no information about the plaintext without

correctly guessing Z. To determine the channel capacity, we

examine Bob’s observed signal-to-noise ratio, which Alice

maximizes by splitting her power P evenly between y and

rZ . Without considering fading or shadowing, Bob’s received

signal power is ||y||2d−α
AB where dAB is the distance between

Alice and Bob, and α is the pathloss exponent. Bob thus

observes SNRB,D =
P
2 d−α

AB

σ2
B

= 1
2SNRN .

In the DWP scheme, suppose ||x||2 = ||rZ ||2, i.e. ηZ = 1.

Assuming x and rZ are independent, then ||y||2 = 2||x||2 and

||x||2 = P
3 . In DWP, after summing y and rZ , x′ is corrupted

by twice the observed noise power, thus Bob’s observed signal-

to-noise ratio is SNRB,W =
P
3 d−α

AB

2σ2
B

= 1
6SNRN . For ease

of analysis, we let the random encrypting signal be AWGN,

and thus Eve’s observed signal-to-noise ratio without correctly

guessing Z is SNRE,W =
||x||2d−α

AB

η2
Z ||rZ ||2d−α

AB+σ2
E

≤ 1
η2
Z
= 1.

Thus, compared to Diffie’s original phone system, DWP

reduces the secrecy capacity by

W log2 (1 + SNRB,D)−W log2 (1 + SNRB,W )+

W log2 (1 + SNRE,W )

≤W (log2 (3) + 1) .

I.e., we are losing at most log2(6) ≈ 2.585 bits per hertz (of

channel bandwidth) per second (of time) of secrecy capacity.

This loss is substantial in a high-noise environment, but may

be tolerable if Alice and Bob are close.

B. Optimal Power Allocation between the Cipher Signal and
the Encrypting Signal

In this section, we explore the tradeoff in secrecy capacity of

allocating power between y and r. In order to decrypt using our

modified superheterodyne receiver, the plain signal must be
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equal to the sum of the encryption signal and the cipher signal.

We show that the secrecy capacity is maximized between Alice

and Bob when β2 = 0.5, and thus the superheterodyne receiver

readily provides the optimal performance.

Lemma 7.1: Given y = βx −
√
1− β2ηZrZ , the secrecy

capacity between Alice and Bob is maximized when β2 =
1− β2 = 0.5.

Proof: As illustrated in Figure 6, we fix a scaling factor

for rZ so that the power of the encrypting signal is some η2Z
times the power of x. As discussed in last section, the signal-

to-noise ratio observed by Eve is at most 1
η2
Z

, and is irrelevant

to β; thus the maximum secrecy capacity is achieved when the

channel capacity between Alice and Bob is maximized, which

is equivalent to maximizing the SNR observed by Bob.

Bob’s observed SNR is

SNRB =
d−α
AB

P
2η2

Z+1
β2

(
1 + β2

1−β2

)
σ2
B

= β2(1− β2) · SNRN

2η2Z + 1

The last term is constant with respect to β, and thus SNRB

is maximized when the product of the first two terms is

maximized at β2 = 1− β2 = 1/2.

C. Power Allocation between the Plain Signal and the En-
crypting Signal

In this section, we discuss the relationship between ηZ and

the secrecy capacity between Alice and Bob.

Lemma 7.2: There exists a threshold to Bob’s observed

SNR (SNRB,T ) such that for all SNRB > SNRB,T , there

exists 0 < η2Z < ∞ that yields positive secrecy capacity

between Alice and Bob.

Proof: Given that y and r are equally scaled (i.e. β2 =
0.5), the SNR observed by Bob is SNRB = 1

4
SNRN

2η2
Z+1

= SNRN

8η2
Z+4

,

and the SNR observed by Eve is SNRE ≤ 1
η2
Z
. Prior work has

shown that Alice and Bob enjoy positive secrecy capacity as

long as the channel condition between Alice and Bob is better

than that between Alice and Eve, thus it suffices to show that

there exists a threshold above which Bob’s observed SNR can

be greater than Eve’s with a positive η2Z .

Assume Bob’s observed SNR is SNRB = 8 + ε for some

positive ε. Bob’s observed SNR is larger than Eve’s if η2Z > 4
ε .

Since ε > 0, ηZ is finite. On the other hand, if SNRB ≤ 8,

Bob’s observed SNR can be greater than Eve’s only if η2Z < 0,

which has no physical meaning. Thus, SNRB,T = 8.

D. Impersonation Attacks
One danger of our protocol is that without the key Z,

Mallory can still impersonate as Alice by sending plain signal

over the cipher channel, and nothing over the keying channel.

Bob would then sum the plain signal on the cipher channel

with the pure noise from the keying channel, and receive

Mallory’s plaintext intact; an equivalent problem exists in the

original Diffie’s telephone system if the Z-th telephone plays

an all-0 encrypting text. Because of this attack, the plaintext

should be authenticated at higher layers.

VIII. CONCLUSION

In this paper, we propose a physical-layer cryptosystem,

inspired by Diffie’s telephone system. In exchange of the

usual XOR-then-modulate encryption scheme, we propose

using modulate-then-add, and show that the corresponding

decryption scheme can be implemented by slightly modify-

ing the popular superheterodyne receiver. Our physical-layer

encryption scheme uniquely outperforms other physical-layer

security protocols by guaranteeing positive conditional secrecy

capacity even if Eve’s channel condition is the same or

significantly better than Bob’s, or if the channel between Alice

and Bob is static. Additionally, being a physical-layer scheme,

our proposed protocol is orthogonal to any source-encrypting

cryptosystem, thereby adding another layer of security.

We simulate our cryptosystem using GNU Radio, and

outlined several physical constraints that the receiver must

meet in order to decrypt correctly. We carefully examine the

secrecy capacity of our proposed protocol compared to the

original Diffie’s telephone system, and provide an upper bound

on the loss of secrecy capacity.
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