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ABSTRACT

In an ad hoc network, mobile computers (or nodes) cooperate to
forward packets for each other, allowing nodes to communicate
beyond their direct wireless transmission range. Many proposed
routing protocols for ad hoc networks operate in an on-demand
fashion, as on-demand routing protocols have been shown to of-
ten have lower overhead and faster reaction time than other types
of routing based on periodic (proactive) mechanisms. Significant
attention recently has been devoted to developing secure routing
protocols for ad hoc networks, including a number of secure on-
demand routing protocols, that defend against a variety of possible
attacks on network routing. In this paper, we present the rush-
ing attack, a new attack that results in denial-of-service when used
against all previous on-demand ad hoc network routing protocols.
For example, DSR, AODV, and secure protocols based on them,
such as Ariadne, ARAN, and SAODV, are unable to discover routes
longer than two hops when subject to this attack. This attack is
also particularly damaging because it can be performed by a rela-
tively weak attacker. We analyze why previous protocols fail under
this attack. We then develop Rushing Attack Prevention (RAP), a
generic defense against the rushing attack for on-demand proto-
cols. RAP incurs no cost unless the underlying protocol fails to
find a working route, and it provides provable security properties
even against the strongest rushing attackers.

Categories and Subject Descriptors: C.0 [Computer-Commu-
nications Networks]: Security and protection; C.2.2 [Network
Protocols]: Routing Protocols

General Terms: Security, Performance

Keywords: Ad hoc network routing, security, routing, rushing
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1. INTRODUCTION

An ad hoc network is a collection of mobile computers (or nodes)
that cooperate to forward packets for each other to extend the lim-
ited transmission range of each node’s wireless network interface.
A routing protocol in such a network finds routes between nodes,
allowing a packet to be forwarded through other network nodes
towards its destination. In contrast to traditional network routing
protocols, for example for wired networks, ad hoc network routing
protocols must adapt more quickly, since factors such as signifi-
cant node movement and changing wireless conditions may result
in rapid topology change.

This problem of routing in ad hoc networks is an important one,
and has been extensively studied. This study has resulted in sev-
eral mature protocols [9, 20, 30, 32]. Ad hoc networks are tar-
geted at environments where communicating nodes are mobile, or
where wired network deployment is not present or not economical.
Many of these applications may run in untrusted environments and
may therefore require the use of a secure routing protocol. Fur-
thermore, even when the presence of an attacker is not forseen, a
secure ad hoc network routing protocol can also provide resilience
against misconfigured nodes. In the current Internet, for example,
misconfigured routing tables contribute to the majority of routing
instabilities [26]. Similarly, a software or hardware failure should
cause only the affected node to fail, and not perturb the stability of
routing in the remainder of the network. Mission or safety-critical
networks can use secure ad hoc routing protocols so that config-
uration errors, software bugs, or hardware failures do not disturb
routing at other nodes. As a result, several secure ad hoc network
routing protocols have been proposed [6, 13, 16, 31, 36, 39, 45].

In this paper, we present a new attack, the rushing attack, which
results in denial-of-service when used against all previously pub-
lished on-demand ad hoc network routing protocols. Specifically,
the rushing attack prevents previously published secure on-demand
routing protocols to find routes longer than two-hops (one interme-
diate node between the initiator and target).

Because on-demand protocols generally have lower overhead and
faster reaction time than other types of routing based on periodic
(proactive) mechanisms, on-demand protocols are better suited for
most applications. To defend this important class of protocols against
the rushing attack, we develop a generic secure Route Discovery
component, called Rushing Attack Prevention (RAP), that can be
applied to any existing on-demand routing protocol to allow that
protocol to resist the rushing attack.

Our main contributions in this paper are the presentation of the
rushing attack, the development and analysis of our new secure
Route Discovery component that demonstrates that it is possible
to secure against the rushing attack, and a general design that uses
this component to secure any on-demand Route Discovery mecha-
nism against the rushing attack.
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Figure 1: Example network illustrating the rushing attack.

In Section 2 of this paper, we introduce the rushing attack. Sec-
tion 3 details our assumptions. Section 4 describes our Secure
Neighbor Detection and Secure Route Discovery procedures, and
Section 5 presents two evaluations of our Route Discovery compo-
nent: a simulation study of the performance of our mechanisms,
and an analytical evaluation that gives a conservative lower bound
on the probability that our protocols discover a working route when
subject to this attack. In Section 6, we discuss related work, and in
Section 7, we present conclusions.

2. THE RUSHING ATTACK AGAINST AD HOC

NETWORK ROUTING PROTOCOLS

We introduce here a new attack, which we call the rushing attack,
that acts as an effective denial-of-service attack against all currently
proposed on-demand ad hoc network routing protocols, including
protocols that were designed to be secure. In an on-demand pro-
tocol, a node needing a route to a destination floods the network
with ROUTE REQUEST packets in an attempt to find a route to the
destination. To limit the overhead of this flood, each node typ-
ically forwards only one ROUTE REQUEST originating from any
Route Discovery. In particular, existing on-demand routing pro-
tocols, such as AODV [32], DSR [20], LAR [23], Ariadne [16],
SAODV [45], ARAN [39], AODV secured with SUCV [6], and
SRP [31], only forward the REQUEST that arrives first from each
Route Discovery. In the rushing attack, the attacker exploits this
property of the operation of Route Discovery.

We now describe the rushing attack in terms of its effect on the
operation of DSR Route Discovery [18, 19, 20]; other protocols
such as AODV [33], Ariadne [16], SAODV [45], and ARAN [39]
are vulnerable in the same way. In the network shown in Figure 1,
the initiator node initiates a Route Discovery for the target node. If
the ROUTE REQUESTs for this Discovery forwarded by the attacker
are the first to reach each neighbor of the target (shown in gray in
the figure), then any route discovered by this Route Discovery will
include a hop through the attacker. That is, when a neighbor of the
target receives the rushed REQUEST from the attacker, it forwards
that REQUEST, and will not forward any further REQUESTs from
this Route Discovery. When non-attacking REQUESTs arrive later
at these nodes, they will discard those legitimate REQUESTs. As
a result, the initiator will be unable to discover any usable routes
(i.e., routes that do not include the attacker) containing at least two
hops (three nodes).

In general terms, an attacker that can forward ROUTE REQUESTs
more quickly than legitimate nodes can do so, can increase the
probability that routes that include the attacker will be discovered
rather than other valid routes. Whereas the discussion above has
used the case of nodes that forward only the first ROUTE REQUEST

from any Route Discovery, the rushing attack can also be used
against any protocol that predictably forwards any particular RE-
QUEST for each Route Discovery.

A rushing attacker need not have access to vast resources. On-
demand routing protocols delay ROUTE REQUEST forwarding in
two ways. First, Medium Access Control (MAC) protocols gen-
erally impose delays between when the packet is handed to the
network interface for transmission and when the packet is actually
transmitted. In a MAC using time division, for example, a node
must wait until its time slot to transmit, whereas in a MAC using
carrier-sense multiple access, a node generally performs some type
of backoff to avoid collisions; protocols like IEEE 802.11 also im-
pose an interframe spacing time before transmission actually be-
gins. Second, even if the MAC layer does not specify a delay,
on-demand protocols generally specify a delay between receiving
a REQUEST and forwarding it, in order to avoid collisions of the
REQUEST packets. In particular, because REQUEST packets are
broadcast, and collision detection for broadcast packets is diffi-
cult, routing protocols often impose a randomized delay in RE-
QUEST forwarding. An attacker ignoring delays at either the MAC
or routing layers will generally be preferred to similarly situated
non-attacking nodes. One way to thwart an attacker that rushes in
this way is to remove these delays at both the MAC and routing
layers, but this approach does not work against all types of rushing
attackers and is not general. For example, in a dense network using
a CSMA MAC layer, if a node A initiates a Route Discovery, and B
is two hops away from A, and C and D are neighbors of both A and
B, then then B will likely not receive the ROUTE REQUEST due to
a collision between REQUESTs forwarded by C and D. In a dense
network, such collisions may often prevent the discovery of any
nontrivial routes (routes longer than a direct link), which is even
more severe than the rushing attack, which prevents the discovery
of routes longer than two hops.

Another way that a relatively weak attacker can obtain an ad-
vantage in forwarding speed is to keep the network interface trans-
mission queues of nearby nodes full. For example, if each node
processes the packets it receives in order, and an inefficient RE-
QUEST authentication mechanism is used, the attacker can keep
other nodes busy authenticating REQUESTs containing bogus au-
thentication, thus slowing their ability to forward legitimate RE-
QUESTs. Protocols employing public key techniques are partic-
ularly susceptible to these attacks, since they require substantial
computation to validate each received REQUEST.

A relatively weak attacker can also achieve faster transit of its
REQUEST packets by transmitting them at a higher wireless trans-
mission power level, thus reducing the number of nodes that must
forward that REQUEST to arrive at the target. Since packet transit
time at each hop is dominated by the processing time at the for-
warding node, reducing the path to the target by just one hop is
likely to provide a significant latency advantage, thus strengthen-
ing the attackers position.

A more powerful rushing attacker may employ a wormhole [14]
to rush packets. In this case, the attacker simply forwards all con-
trol packets (but not data packets) received at one node (the attacker)
to another node in the network (e.g., a second attacker). This forms
a tunnel in the network, where packets reaching one end of the tun-
nel are broadcast out the other end. If the tunnel provides signifi-
cantly faster transit than legitimate forwarders, nodes near one end
of the tunnel generally will be unable to discover working routes to
the other end of the tunnel, since it will generally discover routes
through the tunnel. In general, a wired tunnel (in which the two
attackers have a wired connection between themselves) will pro-
vide faster transit than native wireless (multihop) forwarding, since
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node processing delay in forwarding is much longer than the prop-
agation time.

The rushing attack applies to all proposed on-demand protocols
because such protocols must limit the number of packets that any
node will transmit in response to a single Route Discovery. Cur-
rently proposed protocols choose to forward at most one REQUEST

for each Discovery; any protocol that allows an attacker to predict
which ROUTE REQUEST(s) will be chosen for forwarding at each
hop will be vulnerable to some variant of the rushing attack.

3. ASSUMPTIONS

3.1. Network Assumptions

We make the common assumption that most network links are bidi-
rectional. More specifically, we require that the network remain
connected when unidirectional links are ignored. Our Secure Neigh-
bor Detection protocol rejects unidirectional links, so underlying
routing protocols can assume that the network is free of unidi-
rectional links. If another Secure Neighbor Detection technique
is used, and that technique supports unidirectional links, then the
ability of our Secure Route Discovery mechanism to discover and
use unidirectional links is limited only by the underlying routing
protocol.

Wireless physical layers for sending data from one node to an-
other are often vulnerable to jamming. Mechanisms such as spread
spectrum modulation [37], or directional antennas have been exten-
sively studied as means of improving resistance to physical jam-
ming. In addition, an effective jamming attack usually requires
additional hardware; in contrast, a rushing attack is much simpler
to do because the attacker can use the same hardware as legitimate
nodes. An attacker can even remotely break into a legitimate node
and perform these attacks. Moreover, the rushing attack allows for
far more selective denial-of-service, and is thus harder to detect.
Jamming attacks are relatively broad (they deny service to a large
number of participants) and are thus also easier to detect. Though
a jamming attack is also an important denial-of-service attack, we
present mechanisms to defend against the rushing attack because
we believe that the rushing attack is more easily performed.

Medium Access Control protocols are also often vulnerable to
attack. For example, in IEEE 802.11, an attacker can paralyze
nodes in its neighborhood by sending Clear-To-Send (CTS) frames
periodically, setting the “Duration” field of each frame equal to the
interval between such frames [16]. Less sophisticated Medium Ac-
cess Control protocols, such as ALOHA and Slotted ALOHA [1],
are not vulnerable to such attacks but have lower efficiency. In this
paper, we disregard attacks on Medium Access Control protocols.

Prior work has shown that ad hoc network routing in general does
not scale well [10]. Most existing simulation of ad hoc network
routing protocols consider scenarios of 50 to 500 nodes. In this
work, we focus on such medium-sized networks, and will not con-
sider scalability issues; however, we believe that mechanisms such
as clustering, which improve the scalability of other on-demand
ad hoc network routing protocols, can also improve the scalability
of our approach.

3.2. Security Assumptions and Key Setup

The protocols discussed in this paper require an instantly-verifiable
broadcast authentication protocol, for which we use a digital sig-
nature. However, any signature used should be able to keep up
with verification at line speed, to avoid a denial-of-service attack
where an attacker overwhelms the victim by flooding it with bogus
messages. One example of a protocol which should be fast enough
on many nodes is the the HORS one-time signature by Reyzin and

Reyzin [38]. We use the constructions of the BiBa [35] one-time
signature in conjunction with the HORS one-time signature to de-
sign an efficient instantly-verifiable broadcast authentication proto-
col. We also use a Merkle hash tree [28] to generate one signature
over multiple messages, such that each message is independently
verifiable. As used in our simulation evaluation, HORS requires an
average of 156,760 hashes per second to sign and verify all mes-
sages in a 100 node network, a rate easily achievable even by PDAs.
We assume that the keys necessary for broadcast authentication are
distributed in advance; a number of techniques for distributing such
information have been proposed [2, 16, 17, 24, 42, 46]. To escape
the circular dependency of secure routing and key distribution, Hu
et al propose a simple routing protocol that discovers a route to a
trusted third party, which can in turn bootstrap the initial keys [16].

If a wormhole attack, in which an attacker selectively tunnels
packets from one place in the network to another, is considered a
possible threat, our Secure Neighbor Detection requires a mecha-
nism to detect such a tunnel between any two legitimate nodes. A
number of mechanisms for preventing the wormhole attack, such
as TIK, geographical leashes and RF watermarking, have been pro-
posed. Depending on the mechanism used to implement packet
leashes, this requirement benefit other parts of the protocol: TIK [14],
for example, authenticates each packet in a lightweight manner,
thus protecting the more expensive signature verification from a
denial-of-service attack. In particular, if a node A receives an au-
thenticated packet containing a bogus signature from node B, then
A can lower the priority with which it checks signatures sent by
B. As a result, an attacker can only cause each node to verify one
bogus signature for each node compromised by that attacker.

We do not assume tamper-proof hardware; the attacker can thus
compromise nodes and steal their cryptographic keys. We assume
a powerful attacker, which we call coordinated attacker. This is an
attacker that compromised multiple nodes (and thus knows all their
cryptographic keys), with a fast channel to route packets amongst
themselves.

4. SECURE ROUTING REQUIREMENTS AND

PROTOCOL

In this section, we describe a set of generic mechanisms that together
defend against the rushing attack: secure Neighbor Detection, se-
cure route delegation, and randomized ROUTE REQUEST forward-
ing. We also describe a technique to secure any protocol using an
on-demand Route Discovery protocol.

In previous on-demand protocols, node B considers node A to be
a neighbor when B receives a broadcast message from A. Secure
Neighbor Detection, which replaces standard Neighbor Detection,
allows each neighbor to verify that the other is within a given max-
imum transmission range. Once a node A forwarding a ROUTE

REQUEST determines that node B is a neighbor (that is, is within
the allowable range), it signs a Route Delegation message, allowing
node B to forward the ROUTE REQUEST. When node B determines
that node A is within the allowable range, it signs an Accept Dele-
gation message.

Randomized selection of the ROUTE REQUEST message to for-
ward, which replaces traditional duplicate suppression in on-demand
route discovery, ensures that paths that forward REQUESTs with
low latency are only slightly more likely to be selected than other
paths.

Figure 2 shows the basic design of our complete rushing attack
prevention mechanism.
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Figure 2: Our combined mechanisms to secure an on-demand route discovery protocol against the rushing attack.

4.1. Notation

We use the following notation:

• A or B denote communicating nodes.

• A : η R←{0,1}� denotes that node A randomly selects an �-bit
long nonce η.

• A→ B : 〈M,H(A || η)〉 means that node A sends B the mes-
sage M and the hash of A’s identifier concatenated with the
nonce η.

• A→ ∗ : 〈M,ΣM〉 means that node A broadcasts message M
with its signature ΣM .

4.2. Secure Neighbor Detection

One simple instance of the rushing attack is when an attacker for-
wards a ROUTE REQUEST beyond the normal radio transmission
range (for example by using a higher gain antenna or a higher
power level), thus suppressing subsequent REQUESTs from this
Route Discovery. In this section, we present a secure Neighbor
Detection protocol that allows both the sender and the receiver of a
ROUTE REQUEST to verify that the other party is within the normal
direct wireless communication range.

The functionality of Neighbor Detection, in which two nodes
detect a bidirectional link between themselves, is present in some
form in almost every routing protocol. For example, a node partic-
ipating in a periodic protocol generally broadcasts advertisements,
allowing its neighbors to detect it. Most on-demand routing pro-
tocols, on the other hand, perform Neighbor Detection implicitly.
In those protocols, a node receiving a ROUTE REQUEST considers
itself to be a neighbor of the previous-hop node that transmitted the
REQUEST. When that node propagates the REQUEST, it claims a
link between the transmitter and the recipient. Unfortunately, this
implicit Neighbor Detection does not prevent an attacker node re-
ceiving a REQUEST from simply replaying it. In addition, if the
address of the previous-hop node is unauthenticated, an attacker
can claim to be any node propagating a REQUEST, and the next hop
will trust that information (we call this the repeater attack). This
repeater attack is serious, because two nodes that are not within
communication range believe that the other is is its neighbor, giv-
ing the attacker the ability to selectively forward packets between
the two nodes. The repeater attack is an instance of a wormhole
attack [15].

Requirements for Secure Neighbor Detection. Two nodes de-
tect each other as neighbors only if they can communicate and they
are within some maximum transmission range. The secure Neigh-
bor Detection protocol thus prevents an attacker from: (1) intro-
ducing two nodes that are not within the maximum transmission
range as neighbors; and (2) claiming that it is a neighbor of an-
other node without being able to hear packets directly from that
node. From the first requirement, it follows that an attacker should
not be able to tunnel a neighbor solicitation from one compromised

node to another uncompromised node. The second requirement de-
mands that a node (or an accomplice of that node) needs to hear the
neighbor solicitation, since otherwise it cannot claim to be a neigh-
bor. Finally, the protocol should not introduce a denial-of-service
opportunity; for example, flooding a node with neighbor requests
should not consume all CPU resources of that node.

Our Secure Neighbor Detection Protocol. We present a secure
Neighbor Detection protocol that allows both the initiator and the
responder to check that the other is within a maximum communi-
cation range. Assuming negligible MAC protocol delays, we de-
sign a simple three-round mutual authentication protocol that uses
tight delay timing to ensure that the other party is within com-
munication range. In the first round, the initiating node sends a
Neighbor Solicitation packet, either by unicasting that packet to a
specific neighbor, or by broadcasting the packet. Next, a node re-
ceiving the Neighbor Solicitation packet sends a Neighbor Reply
packet. Finally, the initiator sends a Neighbor Verification, which
includes broadcast authentication of a timestamp and the link from
the source to the destination. Figure 3 shows an example of the pro-
tocol. If a node wishes to detect multiple neighbors, it must request
a response from each neighbor, and must initiate Neighbor Detec-
tion with each neighbor separately, in order to avoid an implosion
of Neighbor Reply packets.

To ensure freshness of the reply messages, we use nonces η1 and
η2. The initiator picks η1 at random (of sufficient length that an
attacker has a negligible probability of guessing it) and is thus cer-
tain that the reply message is fresh if the received nonce matches
η1. The measured delay between sending the first message and
receiving the second message provides an upper bound on the dis-
tance of the neighbor: given delay ∆, the neighbor node is no farther
away than ∆/2×c, where c is the speed of light. This is accurate if
a node can quickly process the first message and return an authen-
ticated second message; for example, if HORS is used for authenti-
cation, a node need only perform one hash function to authenticate
the reply. The authentication on message M2 ensures to the initiator
that the response indeed comes from the correct responder. In the
general case, we use the same digital signature for authentication,
but if the two nodes share a secret key, we can also use a message
authentication code for this purpose, for example HMAC [4]. Sim-
ilarly, the nonce η2 and the signature on message M3 ensure to the
responder that the initiator is within transmission range if message
M3 arrives after a sufficiently short delay.

Finally, we rate-limit New Neighbor Solicitations to prevent an
attacker from flooding its neighbors. Figure 3 shows the full proto-
col.

Integration with an On-Demand Protocol. In an on-demand
protocol, neighbor verification is performed during each Route Dis-
covery. As a result, we can defend against New Neighbor Solicita-
tion floods, by relying on the underlying protocol to defend against
ROUTE REQUEST floods; a node responds to any New Neighbor
Solicitation presented with a valid REQUEST. If desired, REQUEST

flood prevention can be achieved through the use of a hash chain,
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S : η1
R←{0,1}�

M1 = 〈NEIGHBOR SOLICITATION,S,η1〉
ΣM1 = Sign(H(M1))

S→ ∗ : 〈M1,ΣM1 〉
R : η2

R←{0,1}(�)
M2 = 〈NEIGHBOR REPLY,S,R,η1,η2)〉
ΣM2 = Sign(H(M2))

R→ S : 〈M2,ΣM2 〉
S : M3 = 〈NEIGHBOR VERIFICATION,S,R,η1,η2〉

ΣM3 = Sign(H(M3))
S→ R : 〈M3,ΣM3 〉

Figure 3: Neighbor Detection between initiator S and respon-
der R.

as in Ariadne [16]. In particular, in Ariadne, each node maintains
a hash chain, and uses elements of the hash chain to authenticate
the flooded REQUEST. These hash chain values provide cheap au-
thentication, and a victim receiving too many Route Discoveries
from an attacker can rate-limit forwarding of that attacker’s RE-
QUESTs. In RAP, we can instead use HORS or any other efficient
authentication mechanism with this rate limiting, to prevent exces-
sive flooding.

When a node A forwards a REQUEST, it includes in that RE-
QUEST a broadcast Neighbor Solicitation. Each node B forwarding
that REQUEST returns a Neighbor Reply, and piggybacks on the
Neighbor Reply a unicast Neighbor Solicitation for A. If A decides
that B is a neighbor based on the wormhole prevention mechanism
used, A returns a signed Neighbor Verification that verifies the link
from A to B. A also includes in packet a Neighbor Reply to the
unicast Neighbor Solicitation sent by B. If B decides that A is a
neighbor based on the wormhole prevention mechanism used, B
forwards the REQUEST, including the Neighbor Verification for the
A→ B link signed by A, and also including a Neighbor Verification
for the B→ A link signed by itself. B need not return a Neigh-
bor Verification, since A is likely to hear the forwarded REQUEST,
which includes the B→ A Neighbor Verification. Figure 4 shows
how B forwards a REQUEST from A.

4.3. Secure Route Delegation

In our ROUTE REQUEST propagation, we want to enable each node
to verify that all the secure Neighbor Detection steps were per-
formed between any adjacent pair of nodes in the REQUEST, i.e.,
verify that both nodes of each adjacent node pair indeed believes
to be a neighbor. We achieve this property through a Secure Route
Delegation mechanism, which is inspired by the work of Kent et
al. in S-BGP [21, 22]. S-BGP uses Route Attestations to ensure
that each Autonomous System (AS) listed in the BGP AS path is
indeed a valid AS. In S-BGP, before sending a route update to its
neighbor, the AS signs a route attestation delegating it the right to
further propagate the update.

We use this mechanism to enable the nodes to verify that all the
secure neighbor detection protocols were executed and that both
neighbors believe that they are within transmission range. We de-
scribe the protocol based on an example. Consider two neighbor-
ing nodes A and B, where A received the current ROUTE RE-
QUEST originating from node S destined for node R with the se-
quence number id. Node A engages in the secure neighboring de-
tection protocol and finds after the second message that B is indeed
within range, so it delegates the ROUTE REQUEST to B as follows:

MA = 〈ROUTE DELEGATION,A,B,S,R, id〉
ΣMA = Sign(H(MA))
A→ B : 〈ΣMA〉

Node A does not need to send the message to B, as B can re-
construct all the fields of the message and verify the signature.
The ROUTE DELEGATION message can be bundled together with
the last message of the secure Neighbor Detection protocol. If B
believes that A is indeed a neighbor within range, B will accept
the ROUTE DELEGATION, continue the protocol, and sign another
ROUTE DELEGATION with the next neighbor.

4.4. Randomized Message Forwarding

The secure Neighbor Detection and secure Route Delegation tech-
niques are not sufficient to thwart the rushing attack, since an ad-
versary can still get an advantage by forwarding ROUTE REQUESTs
very rapidly. We use a random selection technique to minimize the
chance that a rushing adversary can dominate all returned routes.

In traditional ROUTE REQUEST forwarding, the receiving node
immediately forwards the REQUEST and suppresses all subsequent
REQUESTs. In our modified flooding, a node first collects a number
of REQUESTs, and selects a REQUEST at random to forward. There
are thus two parameters to our randomized forwarding technique:
first, the number of REQUEST packets to be collected, and second,
the algorithm by which timeouts are chosen.

Given perfect information, each forwarding node would collect
the maximum possible number of REQUESTs before forwarding
one, since this approach provides the most effective defense against
a rushing attack. However, when the number of REQUESTs is cho-
sen to be too large, randomized forwarding will heavily rely on
the timeout to trigger REQUEST forwarding, increasing latency and
possibly reducing security. In a real network, perfect information
is generally not available; as a result, initiators can include in each
Route Discovery the number of REQUESTs to buffer before for-
warding one, and can adjust this parameter adaptively, based on
the REPLY latency and on the parameters chosen by other nodes.
Alternatively, this number can be chosen as a global parameter, or
locally using an adaptive algorithm, though an adaptive algorithm
may allow certain new attacks.

When perfect topology information is available, the choice of
timeout should be based on the number of legitimate hops between
the initiator and the node forwarding the REQUEST; closer nodes
should choose shorter timeouts than far-away nodes. This topo-
logical information can be approximated by location information;
that is, nodes that are geographically closer should choose smaller
timeouts than nodes that are geographically farther away. When ge-
ographic information is not available, nodes can randomly choose
timeouts; ¡¡¡¡¡¡¡ srouting.tex however, this approach reduces secu-
rity by favoring nodes choosing shorter timeouts.

======= however, this approach reduces security by favoring
nodes choosing shorter timeouts. ¿¿¿¿¿¿¿ 1.12

4.5. Secure Route Discovery

In this section, we describe our secure route discovery protocol. We
use three techniques in concert to prevent the rushing attack: our
secure Neighbor Discovery protocol, our secure Route Delegation
and delegation acceptance protocol, and randomized selection of
which ROUTE REQUEST will be forwarded.

The intuition behind Secure Route Discovery is to make the for-
warding of REQUEST packets less predictable by buffering the first
n REQUESTs received, then randomly choosing one of those RE-
QUESTs. However, we need to prevent an attacker from filling too
many of these n REQUESTs, since otherwise the attacker could sim-
ply rush n copies of a REQUEST, rather than a single REQUEST, and
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A : ηA
R←{0,1}�

M1a = 〈ROUTE REQUEST, id, . . .〉
M1b = 〈NEIGHBOR SOLICITATION,A,ηA〉
ΣM1 = Sign(H(M1a ||M1b))

A→ ∗ : 〈M1a,M1b,ΣM1〉
B : ηB

R←{0,1}�
M2a = 〈NEIGHBOR REPLY,A,B,ηA,ηB〉
ΣM2 = Sign(H(M2a))

B→ A : 〈M2a,M2b,ΣM2〉
A : M3a = 〈NEIGHBOR VERIFICATION,A,B,ηA,ηB〉

ΣM3a = Sign(H(M3a))
M3b = 〈ROUTE DELEGATION,A,B,S,R, id〉
ΣM3b = Sign(H(M3b))

A→ B : 〈M3a,ΣM3a ,M3b,ΣM3b〉
B : η′B

R←{0,1}�
M4a = 〈ROUTE REQUEST, id, . . . ,ΣM3b ,ΣM4a . . .〉
M4b = 〈NEIGHBOR SOLICITATION,B,η′B〉
ΣM4 = Sign(H(M4a) || H(M4b))

B→ ∗ : 〈M4a,M4b,ΣM4〉

Figure 4: B forwarding the REQUEST from A. ΣM2 can be gen-
erated using a shared key, if available. The ROUTE REQUEST

in M4a includes the bidirectional Neighbor Verification mes-
sages M3a and M4c, together with the necessary authenticators
(H(M3b) and ΣM3 ). The use of H(M3b) in ΣM3 allows the verifica-
tion of M3a without needing M3b, which decreases the overhead
caused by the REQUEST packet. The same technique is used in
creating ΣM4 .

our scheme would once again be vulnerable to the rushing attack.
To limit the number of REQUESTs that traverse an attacker, we

exploit the fact that legitimate nodes forward only one REQUEST

in any Discovery. First, we require that each REQUEST carry a
list of nodes traversed by this REQUEST. Second, we require a
bidirectional Neighbor Verification for each link represented by this
list of nodes, for a total of two signed Neighbor Verifications per
hop. Third, to authenticate the node list, we require each node to
authenticate the REQUEST it forwards, though it can piggyback this
authentication together with the Neighbor Verification that it signs.
Finally, we require buffered REQUESTs be duplicate-suppression-
unique: that is, if the route record of any two REQUESTs contain
any node A, the route prefix leading up to (and including) A must
be the same. These three requirements constrain an attacker to the
extent that an attacker that has compromised m nodes can rush at
most m REQUESTs.

To prevent replay of old Neighbor Verification messages, each
message is tied to a specific Route Discovery. Specifically, when
a node S sends a Neighbor Verification for the link from S to R, S
signs not just S and R (as in Figure 3), but also ties a unique Route
Discovery identifier to the Neighbor Verification. For example, in
AODV, the RREQ ID and Originator IP Address in an RREQ form
a unique identifier; in DSR, the Target Address and Identifier fields
from a ROUTE REQUEST, together with the IP Source Address,
form a unique identifier. To address wraparound in these Identifier
fields, if the nodes in the network have very loosely synchronized
clocks (within a few days), the node can include a timeout in ad-
dition to this unique identifier. If network nodes have more tightly
synchronized clocks (within a few seconds), the node can include
a timeout in place of any unique identifier.

In some areas of some networks, a node will not have n dis-

tinct paths to the source of the REQUEST. To enable the Discov-
ery of routes to or through such nodes, we allow a node to for-
ward a REQUEST after some time, even if it has not yet received
n REQUESTs. In certain cases, however, a fixed timeout allows
an attacker to prevent the discovery of a correct route. One way
to avoid such an attack is to choose a random timeout between
tmin and tmax. Alternatively, we can prefer early release when a
node has buffered more REQUESTs, for example by choosing a
random timeout between tmin +(n− j)tadd and tmax +(n− j)tadd,
where j is the number of REQUESTs buffered so far. Choosing
a timeout when location information is available can provide bet-
ter properties. If the initiator of each REQUEST includes a times-
tamp t and its location, intermediate nodes can choose a timeout
of t +fixed timeout+propagation speed×distance to initiator. Af-
ter a node chooses a timeout, either randomly or based on optional
location information, the node randomly chooses one received RE-
QUEST for forwarding.

We implement two additional security optimizations to this ba-
sic scheme. In general, these optimizations are based on using the
property of nonrepudiation to spread information about malicious
nodes. First, we require that each REQUEST be signed by the for-
warding node. A node detecting an attacker forwarding more than
one REQUEST can expose the attacker by flooding the two RE-
QUESTs. Second, if location information is available, and used
for example to implement geographic packet leashes, an attacker
claiming to be in two places at the same time can be blacklisted in
the same way. For example, if each REQUEST includes in the node
list location information and time information for each forwarding
node, a node can keep a database of previous location information,
and find two location claims that significantly exceed the maximum
speed achievable by legitimate nodes. In particular, if location in-
formation is accurate to δ, and time information is consistent to ∆,
and maximum speed is ν, then two locations claimed t time apart
is maliciously claimed if the distance between the two locations is
greater than 2δ+ν(t +2∆). Our blacklist mechanisms do not need
authentication, since the nonrepudiation of contradicting informa-
tion can be can be verified by any nodes. We route blacklist in-
formation by flooding: contradictory information is rebroadcast by
any node that verifies the nonrepudiation and did not have this mali-
cious node on its blacklist. This approach is similar to the blacklist
mechanism used by Ariadne [16].

4.6. Integrating Secure Route Discovery with DSR

To integrate rushing prevention with DSR [18] or other secure pro-
tocols based on DSR, we limit Route Discovery frequency as in
Ariadne [16]. Each time a node forwards a ROUTE REQUEST, it
first performs a Secure Neighbor Detection exchange with the pre-
vious hop. When it forwards the REQUEST, it includes in the RE-
QUEST a bidirectional Neighbor Verification for the previous hop.

As in DSR, the target of a Route Discovery returns a ROUTE

REPLY for each distinct ROUTE REQUEST it receives. Each such
ROUTE REPLY is sent with a source route selected by reversing the
route in the ROUTE REQUEST. This route is likely to work if there
are no attackers on the route, since Neighbor Detection only finds
bidirectional neighbors.

4.7. Integrating Secure Route Discovery with AODV

In AODV [33], as well as other secure protocols based on AODV [6,
39, 45], Route Request (RREQ) packets do not carry a node list.
However, in order to filter excessive malicious RREQs, we require
each RREQ to carry a node list. Instead of forwarding the first
RREQ received, nodes using our Secure Route Discovery randomly
select one of the first n RREQs it receives and treats it as the RREQ
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to forward. More specifically, it places the initiator of the Route
Discovery in its routing table using the previous hop of the RREQ
selected as the next-hop destination. It then appends its address
and authentication information to the node list, and forwards it as
in DSR.

Since AODV is a distance-vector protocol, it cannot make use of
multiple routes. As a result, the target of a Route Discovery also
waits for n RREQ packets before returning a single RREP. The
target signs the RREP, and includes in the RREP neighbor authen-
tication for each hop in the chosen path. This authentication allows
nodes forwarding the RREP to authenticate the entire path back to
the source of the RREP. Each node authenticating this information
establishes a route back to the source of the RREP (the target of
the RREQ). When this RREP reaches the destination, it will have
established a bidirectional route between the initiator and target of
the Route Discovery.

Because AODV does not support multiple routes, the security
properties of AODV using Secure Neighbor Discovery will be some-
what worse than the properties of DSR using Secure Neighbor Dis-
covery.

4.8. Integrating Secure Route Discovery with Secure Ad Hoc
Network Routing Protocols

When using our rushing attack prevention together with a secure
on-demand routing protocol, a node can first attempt Route Dis-
covery using that secure protocol. If a rushing attacker prevents the
discovery of any working routes, the node can then set a flag indi-
cating that it wants to use rushing attack prevention, though it must
also authenticate that flag to prevent modification. This approach
is similar to the principle of expanding ring search: first, a node
uses a cheaper, but sometimes unsuccessful, search. The node only
uses a more expensive search when the cheaper search does not
find a route. This optimization provides benefits in two cases: first,
when there are no rushing attackers, existing secure routing proto-
cols should be able to find a route. Secondly, a rushing attacker
does not have any advantage in one- and two-hop routes.

5. EVALUATION

To evaluate our techniques, we analyzed the cost and effectiveness
through simulation and analysis. Our simulation was designed to
show the cost of our techniques in a non-adversarial environment,
whereas our analytical evaluation shows provable bounds on the
extent to which an attacker can disrupt a protocol using our tech-
niques.

5.1. Simulation Evaluation

To evaluate the overhead of using our secure neighbor discovery
mechanism in a non-adversarial environment, we simulated our
scheme using the ns-2 simulator, using Ariadne [16] as our underly-
ing routing protocol. We call this modified protocol RAP (Rushing
Attack Prevention). We did not implement the optimizations de-
scribed in Section 4.8, because our simulations did not include an
attacker, so our results would be equivalent to just using Ariadne.
We used the original Ariadne source code [29], and modified it to
use digital signatures based on HORS and geographical leashes for
wormhole protection [14]. We compared our results with Ariadne
and DSR in order to determine the added costs of RAP when there
are no attackers. However, when a rushing attacker is present, ex-
isting on-demand ad hoc network routing protocol would in general
be unable to deliver packets over paths longer than two hops (Sec-
tion 2). RAP, on the other hand, would be able to discover working

paths much of the time, and as a result, would generally outperform
existing on-demand routing protocols.

We chose HORS as our broadcast signature, using a time interval
of 5 seconds and allowing each node to authenticate up to 20 mes-
sages per time interval. We assumed a time synchronization error
of 1 second, and used 180 byte signatures. As a result, each pub-
lic key is 78380 bytes, and each node has an amortized workload
of 156760 hash operations per second at each node for generating
signatures, as well as verifying all signatures from all nodes. (This
level is well within the capability of modern PDAs, and represents
around 10% CPU utilization on modern workstations). Our param-
eters were chosen to provide an 80 bit security level; that is, an
attacker must guess 280 signatures to forge one signature in expec-
tation. When signatures were needed at a faster rate than permitted
by HORS, we used a multi-signature scheme based on Merkle hash
trees [28]. We simulated packet leashes based on optional location
information, and waited for 2 REQUEST packets, or a 0.2 seconds
fixed timeout plus the distance to the initiator times a propagation
speed of 1500 meters per second.

Because a square area is more likely to support multiple routes
between a source an a destination, our simulations used 100 nodes
in a 1000 m×1000 m space moving according to the random way-
point model [19]. In this model, each node is randomly placed;
at the beginning of the simulation, it waits for a pause time, then
chooses a velocity uniformly between 0 and 20 meters per second.
It then proceeds to a random location at that velocity, and upon ar-
riving, waits for the pause time and repeats. We simulated pause
times of 0, 30, 60, 120, 300, 600, and 900 seconds.

We chose a workload of 5 flows, each producing 4 packets per
second, using 64-byte packets. This workload was sufficient to
cause significant congestion with our scheme, even though normal
ad hoc network routing protocols can deliver four or more times the
load at lower loss rate; however, secure neighbor discovery incurs
significantly higher overhead due to the four-way handshake and
speed-of-light delays associated with it. We simulated a link-layer
data rate of 2 Mbps.

RAP has significantly worse performance than both Ariadne and
DSR because of the added load of the Secure Neighbor Discovery.
Figure 5(a) shows the Packet Delivery Ratio of the three protocols.
DSR delivers between 99.8% and 100% of offered traffic. Ariadne
delivers between 95.0% and 100% of offered traffic; a significant
improvement over previous simulation results [16]. This suggests
that previous simulations used too high a traffic load to fairly eval-
uate Ariadne in the absence of congestion. Even with this light
traffic load, RAP was able to deliver just 7.6% to 47.7% of offered
load. This performance is primarily due to congestion. At higher
movement speeds (lower pause time), the lower packet delivery ra-
tio is caused by an even higher packet overhead, which results from
the on-demand nature of the protocol. We also simulated RAP car-
rying a lower load of just one flow. At higher pause times, Ariadne
with RAP has sufficiently low overhead to deliver between 73.7%
and 74.5% of traffic. Even with these pause times, 92.1% of drops
were due to MAC-layer congestion, compared to just 4.15% due
to the node’s inability to find a route. This MAC-layer congestion
severely hampers our protocol’s ability to deliver application-layer
packets.

Figure 5(b) shows the median latency of delivered packets. DSR
and Ariadne appear to have zero mean latency, since their median
latencies of 4.3ms and 3.8ms respectively are significantly lower
than the 1050ms median latency of RAP. Two factors contribute to
the higher latency of RAP: first, congestion increases the time each
node must wait to acquire the medium, and second, if a node re-
ceives just one ROUTE REQUEST packet from a Route Discovery,
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Figure 5: Unoptimized RAP performance evaluation results in non-adversarial environment. Optimized RAP would have same
results as Ariadne, except that it would perform better when under attack. Under attack, optimized RAP and Ariadne would
perform identically for one- and two-hop routes, but in finding longer routes, RAP should significantly outperform Ariadne, since
RAP finds working routes with moderate probability, but Ariadne and DSR can never find routes. “RAP 1 Flow” refers to RAP with
the lighter communications pattern of one CBR source. Results based on averages over 50 simulation runs; the error bars represent
the 95% confidence interval of the mean.

it waits a significant amount of time before forwarding that RE-
QUEST in an attempt to collect enough REQUESTs and choose one
at random.

Figures 5(c) and 5(d) show the Packet Overhead and Byte Over-
head of the three protocols. At higher pause times, RAP has more
than five times as much overhead when it uses five flows. This
indicates that the congestion caused by the protocol significantly
reduces the usefulness of the routing protocol packets. When con-
gestion is not an issue, we actually expect that overhead should be
less than a factor of five, because nodes can cache information they
overhear, thus improving efficiency.

Our performance evaluation shows that in non-adversarial envi-
ronments, RAP adds significant costs relative to other secure rout-
ing protocols. Many of these costs are due to the congestion created
at lower bit rates. However, RAP is designed to be used only when
necessary (Section 4.8), so these higher costs are only incurred
when the underlying protocol is otherwise unable to discover a
working route. Specifically, RAP incurs no cost until the underly-

ing protocol is completely prevented from finding a working route.
It then allows that protocol to use a higher cost approach to suc-
cessfully deliver packets even against a rushing attacker. In the
next section, we show how RAP performs under a rushing attack,
in which DSR and Ariadne would be unable to find routes contain-
ing more than three nodes (two hops).

5.2. Security Analysis

This section discusses the security properties achieved with RAP
when n distinct routes (both legitimate and attacking) exist be-
tween the originator and each other node in the network. (As in
Section 4.5, two routes are considered distinct if they end in differ-
ent nodes.) Since routes are required to end in different nodes, an
attacker with access to the keys of m compromised nodes can gen-
erate at most m distinct, maliciously injected ROUTE REQUESTs
for the purpose of denial-of-service.

To analyze the probability of a node subverting a Route Discov-
ery, we assume that the attacker rushes m distinct REQUESTs to
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initiator target

Figure 6: Example network topology used in RAP security
analysis.

X
x = 1 x = 2 x = 3 x = 4

initiator target

Figure 7: An example of a successful Route Discovery. Each
gray node chose a valid REQUEST and belonged to a route
for which a REPLY was sent. Each line represents a hop in a
path chosen by a legitimate REQUEST; the network topology is
shown in Figure 6.

each node in the network. As a result, each node needs only n−m
additional distinct REQUESTs. We also suppose that the network
topology of these legitimate requests is represented by Figure 6,
such that the � hops from the source to the target form a sequence
of tiers, such that the n−m neighbors of the source form the first
tier, the n−m neighbors of the target form the last tier, and any two
adjacent tiers form a complete, bipartite graph.

We denote the probability of successfully finding a route at tier x
given y nodes at that tier to be Sx,y. In particular, we seek the proba-
bility S�,n−m. Since one-hop neighbors cannot be subverted, S1,y =
1 for all y > 0. At any other level (that is, when x �= 1), the probabil-
ity that i of the y neighbors will choose one of the m bogus ROUTE

REQUESTs is given by the binomial PDF
(y

i

)(m
n

)y−i ( n−m
n

)i. For
example, in Figure 7, at x = 4, y = 3 nodes received a valid ROUTE

REPLY, but only i = 2 of them forwarded a valid REQUEST.
Each of the i nodes that do not choose bogus REQUESTs chooses

one of the REQUESTs it received. Some of these REQUESTs may
overlap; the probability of choosing exactly j distinct previous hops
is given by pn−m− j(n−m, i), where pr− j(r, i) is the probability that
when i balls are thrown into r boxes, exactly r− j boxes are empty
(that is, exactly j boxes are full). The solution to the classical occu-

pancy problem [43] gives pr− j(r, i) =
( r

r− j

) j
∑

k=0
(−1)k

( j
k

)(
j−k
r

)i
.

For example, in Figure 7, at x = 4, i = 2 nodes chose j = 2 dis-
tinct previous hops, and at x = 3, i = 2 nodes chose j = 1 distinct
previous hops.

When, at a level x �= 1, i nodes do not choose bogus REQUESTs
but instead choose a total of j distinct, legitimate REQUESTs, the
probability that the Route Discovery will be successful is Sx−1, j
by definition. Then Sx,y is given by the equation in Figure 5.2.
For example, when n = 6, m = 2 and � = 5, the probability of a
successful Route Discovery is 46%.

We now argue that the case above reflects a worst case analy-
sis by analyzing some potential variations. First, the n−m ad-
ditional incoming nodes could come from earlier tiers (e.g., tiers
with lower x). However, since Sx,y is monotone decreasing with
increasing x and fixed y, the opportunity to choose nodes from ear-

lier tiers only provides a benefit. Second, there may not be as much
overlap between the predecessors of the nodes in a single tier; how-
ever, this only reduces the number of collisions at the previous tier.
Fewer collisions at the previous tier improves performance, since
Sx,y is monotone increasing with fixed x and increasing y. Third,
an attacker can choose to reduce the number of bogus REQUESTs it
sends to each node; this has the effect of reducing m, which again
increases the probability of success. A final attack allows a pow-
erful attacker to monitor the REQUESTs forwarded by each node
legitimate node. Some of these legitimate nodes will have ran-
domly chosen REQUESTs that represent compromised routes. The
attacker can then attempt to forward such REQUESTs to nodes that
did not hear that REQUEST directly from that node. This attack will
be prevented by wormhole detection.

As mentioned in Section 4.7, if only one ROUTE REPLY is re-
turned with any discovery, security is somewhat lower. In partic-
ular, only one route is returned, and each hop after the first has a
n−m

n probability of choosing a nonattacking node under the attacker
model used in this section. In a working route, all nodes must
forward a nonattacking REQUEST. As a result, the probability of

choosing a working route is
(

n−m
n

)�, where � is the number of in-
termediate nodes (excluding the initator and target).

This section presented an extremely conservative security analy-
sis. In particular, an attacker as aggressive as the one described here
would need to propagate the ROUTE REQUEST from each Route
Discovery from many different locations, possibly subjecting it to
an intrusion detection mechanism. A real attacker considering the
tradeoff between an improved probability of subversion and an in-
creased probability of being caught is unlikely to use such a pow-
erful attack.

6. RELATED WORK

We have already discussed the vulnerability of current secure on-
demand ad hoc network routing protocols [6, 39, 16, 31, 45] to the
rushing attack in Section 2. Perlman’s Flooding NPBR [34] routing
protocol for wired networks does not suffer from this attack, since
the protocol does not depend on the actual path of the flood for
routing; rather, it requires that each packet be flooded through the
the network.

Other secure routing protocols have been proposed based on pe-
riodic (proactive) mechanisms, for wired networks [7, 11, 12, 21,
25, 40, 41] as well as for wireless ad hoc networks [13, 36]. Al-
though these protocols typically are not vulnerable to rushing attacks,
such periodic protocols are often less desirable for ad hoc network
routing due to their higher overhead and slower adaptivity.

Other areas in secure ad hoc network routing have been explored,
such as trust establishment [2, 16, 17, 42], key generation [3], nodes
that maliciously do not forward packets [27], and security require-
ments for forwarding nodes [44]. These areas are beyond the scope
of this paper.

Routing protocol intrusion detection has been studied in wired
networks as a mechanism for detecting misbehaving routers. Che-
ung and Levitt [8] and Bradley et al [5] propose intrusion detection
techniques for detecting and identifying routers that send bogus
routing update messages. In this paper, we describe one invariant
of legitimate node behavior, and introduce a distributed mechanism
to exclude nodes that have been caught violating that invariant.

7. CONCLUSION

In this paper, we have described the rushing attack, a novel and
powerful attack against on-demand ad hoc network routing proto-
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Figure 8: The probability of a successful Route Discovery in a network using RAP

cols. This attack allows an attacker to mount a denial-of-service
attack against all previously proposed secure on-demand ad hoc
network routing protocols. We have also presented RAP (Rushing
Attack Prevention), a new protocol that thwarts the rushing attack.

We found that the widely used duplicate suppression technique
makes the rushing attack possible, and we designed a new Route
Discovery protocol called RAP that replaces the standard mecha-
nism and thwarts the rushing attack. Our approach is generic, so
any protocol that relies on duplicate suppression in Route Discov-
ery can use our results to fend off rushing attacks. More impor-
tantly, we demonstrated that there are mechanisms that can defend
against the rushing attack, even though all previous attempts at se-
cure on-demand ad hoc network routing protocols have been vul-
nerable.

When integrated with a secure routing protocol, RAP incurs no
cost unless the underlying secure protocol cannot find valid routes.
When RAP is enabled, it incurs higher overhead than do standard
Route Discovery techniques, but it can find usable routes when
other protocols cannot, thus allowing successful routing and packet
delivery when other protocols may fail entirely. We have also shown
that existing on-demand routing protocols can be retrofitted using
our technique to resist the rushing attack.
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